Типы репарации. Ферментные системы репарации. Антимутационные барьеры клетки

Типы репарации: Прямая репарация, эксцизионная репарация, пострепликативная репарация.

Системы Репарация существуют не только у микроорганизмов, но также в клетках животных и человека, у которых они изучаются на культурах тканей. Известен наследственный недуг человека — пигментная ксеродерма, при котором нарушена Репарация Каждая из систем Репарация включает следующие компоненты: фермент, «узнающий» химически измененные участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий поврежденный участок; фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого; фермент (лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность. Ферментные системы Репарация, как полагают, принимают участие и в нормальной репликации ДНК, т. е. её удвоении.

 

 

41.Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.
Наиболее частыми моногенными заболеваниями являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:
1) в замене основания в кодоне, это так называемая миссенс-мутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;
2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;
3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.
Известны и другие типы генных мутаций.
По типу молекулярных изменений выделяют:
делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;
дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;
инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;
инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.
Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.
Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.
Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.
Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является

классическим примером генетической изменчивости нормальных признаков человека.
Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

С точки зрения структурно-функциональной организации генов, происходящие внутри них замены, вставки, выпадения, перемещения нуклеотидов можно объединить в следующие группы:
1) мутации в регуляторных областях генов
► мутации в промоторной части (например, регуляторном элементе с последовательностью PuCPuCCC и внутри ТАТА-бокса у гена р-глобина) снижают уровень синтеза белкового продукта;
► мутации в сайте полиаденилирования снижают уровень транскрипции (характерно для афроамериканцев, страдающих талассемией; подробно о гемоглобинопатиях см. часть П Медицинская генетика).
Таким образом, мутации в регуляторных 5' и 3'-нетранслируемых областях генов вызывают количественные изменения соответствующих продуктов и проявляются фенотипически (клинически) в зависимости от порогового уровня белков, при котором их функция еще сохраняется;
2) мутации в кодирующих областях генов
► мутации в экзонах могут приводить к преждевременному окончанию белкового синтеза. Именно это происходит, к примеру, в случае 6-талассемии: в результате мутаций внутри экзона гена гемоглобина белковая цепь оказывается укороченной и не обладает активностью;
► мутации в интронах способны генерировать новые сайты сплайсинга, которые, конкурируя с нормальными (исходными), в итоге, заменяют их. Возникновение замен в гене гемоглобина, замедляющих сплайсинг, известно и для В0-, и для В+-талассемии.
► мутации в сайтах сплайсинга (на стыках экзонов и нитронов), нарушают процессинг первичного РНК-транскрипта и приводят к трансляции бессмысленных белков: удлиненного при неправильном вырезании интронов либо укороченного при вырезании экзонов. Так, в результате одиночных замен в донорском участке сплайсинга гена гемоглобина процессинг нарушается, что приводит к развитию В0- или р+-талассемии. А мутация сдвига рамки считывания в акцепторном участке сплайсинга гена ХРА приводит к полной инактивации белка и, как следствие, к развитию тяжелой формы пигментной ксеродермы.
Замены нуклеотидов в кодирующих областях генов, не сопровождающиеся заменами аминокислот в силу вырожденности генетического кода, приводят к нейтральным мутациям, не оказывающим заметного влияния ни на функцию соответствующего белка, ни на его структуру.
42. Мутация: хромосомные

 

Различают два основных типа хромосомных мутаций: численные хромосомные мутациии структурные хромосомные мутации. В свою очередь, численные мутации делятся на анэуплоидии, когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом, и полиплоидии, когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией, а возникновение дополнительной хромосомы у любой пары хромосом — трисомией. Структурные хромосомные мутации представлены транслокациями, делециями, инсерциями, инверсиями, кольцами и изохромосомами.

Численные хромосомные мутации

Трисомии. Трисомией называют появление в кариотипе дополнительной хромосомы. Самым известным примером трисомии является болезнь Дауна, которую часто называют трисомией по хромосоме 21. Результатом трисомии по хромосоме 13 является синдром Патау, а по хромосоме 18 — синдром Эдвардса. Все названные трисомии — аутосомные. Другие трисомии по аутосомам нежизнеспособны, погибают внутриутробно и, по-видимому, теряются в виде спонтанных абортов. Жизнеспособными являются индивидуумы с дополнительными половыми хромосомами. Более того, клинические проявления дополнительных хромосом X или Y могут быть весьма незначительными.

Обычно трисомии возникают из-за нарушения расхождения гомологичных хромосом в анафазе мейоза I. В результате в одну дочернюю клетку попадают обе гомологичные хромосомы, а во вторую дочернюю клетку не попадает ни одна из хромосом бивалента. Иногда, однако, трисомия может быть результатом нарушения расхождения сестринских хроматид в мейозе II. В этом случае в одну гамету попадают две совершенно одинаковые хромосомы, что в случае ее оплодотворения нормальным спермием даст трисомную зиготу. Этот тип хромосомных мутаций, ведущих к трисомии, называют нерасхождением хромосом. Аутосомные трисомии возникают из-за нерасхождения хромосом, наблюдающегося преимущественно в оогенезе, но и в сперматогенезе нерасхождение аутосом также может быть. Нерасхождение хромосом может происходить и на ранних стадиях дробления оплодотворенной яйцеклетки. В этом случае в организме присутствует клон мутантных клеток, который может захватывать большую или меньшую часть органов и тканей и иногда давать клинические проявления, сходные с теми, которые наблюдают при обычной трисомии.

Причины нерасхождения хромосом остаются неясными. Известный факт связи между нерасхождением хромосом (особенно хромосомы 21) и возрастом матери до сих пор не имеет однозначной интерпретации.

Моносомии. Отсутствие любой аутосомы является в абсолютном большинстве случаев несовместимым с нормальным развитием и приводит к ранним спонтанным абортам. Очень редкое исключение — моносомия по хромосоме 21. Моносомия может быть результатом нерасхождения хромосом или потери хромосомы во время ее движения к полюсу клетки в анафазе.

Анеуплоидия по половым хромосомам. Моносомия по половым хромосомам приводит к образованию организма с кариотипом ХО, клиническим проявлением которого служит синдром Тернера. В 80% случаев моносомия по хромосоме X является результатом нарушения мейоза у отца (нерасхождение хромосом X и Y). Большинство ХО-зигот погибают внутриутробно.

Трисомия по половым хромосомам может быть трех типов — с кариотипом 47,XXY, 47,XXX и 47,XYY. Трисомия 47,XXY известна как синдром Клайнфелтера. Примерно в 50% случаев причиной синдрома является нерасхождение хромосом X в оогенезе, другие 50% случаев объясняются нерасхождением хромосом X и Y сперматогенеза. Абортируется около 50% эмбрионов с таким кариотипом. Трисомия 47,XXX является в абсолютном большинстве случаев результатом нерасхождения хромосом в гаметогенезе матери. Напротив, тримосия 47,XYY происходит в результате нарушения мейоза в гаметогенезе отца. Это нарушение может произойти только в мейозе II вследствие нерасхождения хромосом Y. Трисомии 47,XXX и 47,XYY встречаются с частотой 1 : 1000 среди женщин и мужчин соответственно, они проявляются относительно небольшими фенотипическими изменениями и обычно обнаруживаются в виде случайных находок.

Полиплоидия. Полиплоидные клетки содержат утроенный или учетверенный гаплоидный набор хромосом. У человека триплоидия обнаруживается иногда у спонтанных абортусов, известно также несколько случаев живорождений, но больные погибали в течение 1-го месяца жизни. Триплоидия может быть обусловлена нарушением мейотического расхождения всего набора хромосом в мейозе женских или мужских половых клеток. В результате либо яйцеклетка, либо сперматозоид оказываются диплоидными. В качестве механизма триплоидии рассматривают также возможность оплодотворения яйцеклеток двумя сперматозоидами. В том случае, когда триплоидия обусловлена отцовским диплоидным набором хромосом, возникает пузырное перерождение плаценты, так называемый пузырный занос.

Структурные хромосомные мутации

Структурные мутации хромосом могут возникать только в результате разрыва хромосом с последующим воссоединением, сопровождающимся нарушением исходной конфигурации хромосом. Такие мутации могут быть сбалансированными или несбалансированными. При сбалансированных хромосомных мутациях нет утраты или избытка генетического материала, поэтому они не имеют фенотипических проявлений, кроме тех случаев, когда в результате разрыва хромосомы в месте разрыва оказывается функционально важный ген. В то же время у носителей сбалансированных хромосомных мутаций могут образовываться несбалансированные по хромосомному набору гаметы, и, как следствие этого, у плода, возникшего от оплодотворения такой гаметой, хромосомный набор окажется также несбалансированным. При несбалансированном хромосомном наборе у плода развиваются тяжелые клинические проявления патологии, как правило, в виде комплекса врожденных пороков развития.

Делеции. Делеция означает потерю участка хромосомы. Терминальные делеции возникают, когда в результате одного разрыва в хромосоме сама хромосома укорачивается, а фрагмент обычно теряется при следующем делении клетки. Остальные делеции, которые называют интерстициальными, возникают в результате двух разрывов в хромосоме. Делеция участка хромосомы обусловливает моносомию по этому участку, которая, как правило, оказывается летальной. Считается, что делеция более 2% хромосомного материала от гаплоидного набора будет летальной. В то же время некоторые делеционные синдромы совместимы с жизнью. К ним относятся синдром Вольфа— Хиршхорна и синдром «кошачьего крика».

Дупликации. Дупликация — удвоение участка ДНК, также может возникнуть дупликация части хромосомного материала, вовлеченного в транслокацию. Микродупликации могут также быть результатом неравного кроссинговера в гомологичных хромосомах. Обычно дупликации не приводят к появлению столь выраженных аномалий развития, как делеции.

Транслокации. Транслокациями называют перенос генетического материала с одной хромосомы на другую. Если разрывы возникают одновременно в двух хромосомах и последние обмениваются образовавшимися свободными сегментами, то такие транслокации называют реципрокными. В этом случае кариотип остается представленным 46 хромосомами, а транслокация может быть выявлена только при детальном анализе хромосом. Реципрокные транслокации обычно не сопровождаются фенотипическими проявлениями. Реципрокные транслокации приводят к образованию несбалансированных гамет, когда они проходят мейоз. Обычно реализуются следующие две возможности: в одну гамету попадают две нормальные, а в другую — две транслоцированные (такой тип расхождения называется альтернативным) хромосомы, и в обе гаметы попадают одна нормальная и одна транслоцированная хромосома. Во втором случае возможны две комбинации из нормальной и транслоцированных хромосом. Теоретически все 4 типа расхождения должны реализоваться с равной вероятностью.

Особый вид реципрокных транслокаций представляют собой так называемые робертсоновские транслокации. В этом случае разрывы в двух акроцентрических хромосомах локализуются в области центромер или в непосредственной близости от них. Длинные плечи хромосом сливаются, а короткие теряются. Поскольку короткие плечи акроцентрических хромосом содержат гены рРНК, то их потеря никак не проявляется, так как множественные копии этих генов содержатся также в других акроцентрических хромосомах. Поэтому робертсоновская транслокация функционально является сбалансированной. В кариотипе число хромосом уменьшается до 45. Как и при реципрокных транслокациях, риск образования несбалансированных гамет связан с тем, как протекает мейоз у носителей робертсоновской транслокации.

Возможно образование 6 типов гамет в результате различных способов расхождения хромосом, вовлеченных в робертсоновскую транслокацию:

1) гаметы с нормальными хромосомами;

2) комплементарные им гаметы с робертсоновской транслокацией (оба типа гамет сбалансированные);

3) гаметы, несущие одну нормальную и транслоцированную хромосому;

4) гаметы, несущие вторую нормальную и транслоцированную хромосому;

5) гаметы, несущие только одну нормальную хромосому;

6) гаметы, несущие только вторую нормальную хромосому.

В том случае, когда робертсоновская транслокация является результатом слияния длинных плеч хромосом 21, все гаметы будут несбалансированными. В семье, в которой один из родителей является носителем такой транслокации, все дети будут с болезнью Дауна.

Инсерции. Когда сегмент одной хромосомы переносится и вставляется в другую хромосому, такую перестройку называют инсерцией. Для того чтобы произошла инсерция, необходимо не менее 3 разрывов хромосом. Поскольку в случае возникновения инсерции не теряется и не добавляется новый генетический материал, такую перестройку считают сбалансированной. Однако у носителей такой инсерции 50% гамет окажутся несбалансированными, поскольку они будут нести хромосому либо с делецией, либо с инсерцией. Вследствие этого будут образовываться зиготы с частичной моносомией или частичной трисомией.

Инверсии. Инверсией называют хромосомную мутацию, когда после двух разрывов в одной хромосоме сегмент хромосомы, расположенный между разрывами, поворачивается на 180° и занимает инвертированное положение. Если в инвертированный сегмент попадает центромера, то такую инверсию называют перицентрической, а если инверсия сегмента хромосомы происходит в пределах одного плеча — парацентрической. При инверсии не происходит потери генетического материала, кроме тех случаев, когда разрыв хромосомы может затронуть функционально важный ген. Поэтому носители обоих типов инверсий не имеют, как правило, каких-либо патологических симптомов. Более того, некоторые инверсии, например перицентрическая инверсия в хромосоме 9, встречаются как нормальный признак с достаточно высокой частотой в некоторых этнических группах. Как и при других сбалансированных перестройках, инверсии в мейозе могут приводить к образованию несбалансированных гамет.

Изохромосомы. Изохромосомы возникают в тех случаях, когда центромера делится не продольно, а поперечно. В результате одно из плеч теряется, а второе удваивается. Чаще всего выявляется изохромосома, составленная из длинных плеч хромосомы X. В этом случае у индивидуума, носителя такой изохромосомы X, обнаруживают проявления синдрома Шерешевского—Тернера.

Кольцевые хромосомы. Этот тип хромосомной мутации возникает в том случае, когда разрывы наблюдаются в обоих плечах какой-то хромосомы. Ацентрические фрагменты при этом теряются, а центральная часть хромосомы замыкается в кольцо. Если такая кольцевая хромосома образуется из аутосомы, то из-за отсутствия значительной доли генетического материала этой хромосомы гамета и зигота оказываются несбалансированными, что должно привести к ранней потере зародыша с кольцевой хромосомой. Если все-таки зародыш образуется, то кольцевая хромосома имеет тенденцию теряться во время митотическихделений клеток. Как следствие, возникает мозаицизм по наличию в клетках кольцевой хромосомы

Мутация: геномные

\

Геномные мутации. Полиплоидия – увеличение числа хромосом, кратное диплоидному набору (клетки печени в норме). Анеуплоидия (гетероплоидия)- уменьшение или увеличение количества хромосом не кратное диплоидному. Гаплоидия – наличие гаплоидного набора хромосом в некоторых клетках (как правило, происходит гибель клеток).

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n), тетраплоиды (4n) и т.д.

Гетероплоидия (анеуплоидия) — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Наиболее вероятной причиной гетероплоидии является нерасхождение какой-либо пары гомологичных хромосом во время мейоза у кого-то из родителей. В этом случае одна из образовавшихся гамет содержит на одну хромосому меньше, а другая — на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида: нулесомия (2n - 2), моносомия(2n - 1), трисомия (2n + 1), тетрасомия (2n + 2) и т.д.

На генетических схемах, приведенных ниже, показано, что рождение ребенка с синдромом Клайнфельтера или синдромом Тернера-Шерешевского можно объяснить нерасхождением половых хромосом во время анафазы 1 мейоза у матери или у отца.

1) Нерасхождение половых хромосом во время мейоза у матери

Р ♀46, XX × ♂46, XY    
Типы гамет 24, XX 24, 0   23, X 23, Y    
F 47, XXX трисомия по Х-хромосоме 47, XXY синдром Клайнфельтера   45, X0 синдром Тернера- Шерешевского 45, Y0 гибель зиготы
           

2) Нерасхождение половых хромосом во время мейоза у отца

Р ♀46, XX × ♂46, XY
Типы гамет 23, X   24, XY 22, 0
F 47, XXY синдром Клайнфельтера   45, X0 синдром Тернера- Шерешевского

 

Заболевания, причиной которых являются геномные мутации, также относятся к категории хромосомных. Их наследование не подчиняется законам Менделя. Кроме вышеназванных синдромов Клайнфельтера или Тернера-Шерешевского, к таким болезням относятся синдромы Дауна (47, +21), Эдвардса (+18), Патау (47, +15).

Полиплодия характерна для растений. Получение полиплоидов широко используется в селекции растений.


Геномные мутации могут обусловить развитие специфических, полуспецифических и неспецифических генетических эффектов.

Специфические эффекты связаны с изменениями содержания структурных генов, кодирующих продукцию специфических белков. Так, при трисомии по хромосоме 21 (синдром Дауна) в 1,5 раза повышена активность фермента - супероксиддисмутазы 1 (ген, котролирующий этот фермент находится на хромосоме 21). Данный фермент обусловливает развитие слабоумия.

Полуспецифические эффекты связаны с изменением содержания генов, контролирующих ключевые этапы клеточного метаболизма (гены рРНК и тРНК, гистоновых и рибосомных белков, сократительных белков и др.).

Неспецифические эффекты зависят от изменений в структуре гетерохроматина, который имеет важное значение для нормального формирования в онтогенезе полигенно наследуемых количественных признаков (длина и масса тела, продолжительность жизни, интеллектуальные способности и др.).

44. Молекулярно-генетическиеметоды исследования и их медицинское приложение

молекулярно-цитогенетические методы. Методы флюоресцентной гибритизации FISH. Для этого метода требуется наличие ДНК – зондов. ДНК –зонд –одноцепочный фрагмент ДНК, длиной до 30 нуклеотидов и известного нуклеотидного состава. ДНК зонд метится флюоресцентными красителями и одлюминисцентным микроскопом дает характерное зеленое свечение. Сущность метода: 1получение ДНК-хромосом клеток или их фрагментов, 2 образец, полученная ДНК обрабатывается щелочью, для образования однонитевых ДНК, 3 обработка однонитевых ДНК, ДНК зондами, 4 ДНК зонды присоединяются к комплементарным участкам однонитевых цепей ДНК, 5 под люминисцентным микроскопом ДНК-зонды дают свечение и указывают на искомый фрагмент ДНК или ген. Метод широко применяется для изучения локализации генов, в хромосомах человека, картирование хромосом человека, сложные перестройки хромосом, диагностики хромосом, болезней. С экспресс методом диагностики хромосомной патологии относятся и традиционные методы: кариотипирование – подсчет числа хромосом и определение полового хроматина. Суть 1. У человека берут соскоп буккального эпителия, 2. Смесь клеток размазывают на предметном стекле, 3. Окрашивают, 4. В ядрах определяют тельце Бара.

Близнецовый метод. этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов.

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов. Поэтому среди монозиготных близнецов наблюдается высокий процент конкордантных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, т.е. различия.

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний.

При статистической обработке материала, получаемого при обследовании группы населения по интересующему исследователя признаку, основой для выяснения генетической структуры популяции является закон генетического равновесия Харди — Вайнберга.

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека.

методом дифференциальногоокрашивания хромосом, который расширил -возможности цитогенетического анализа, позволив точно идентифицировать хромосомы по характеру распределения в них окрашиваемых сегментов.

Биохимический метод. Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме

Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором —более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии.

Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.