Нарушения механизмов диффузии и перфузии

Нарушения диффузии газов в легких

Проникновение кислорода из альвеолярного пространства в кровь и углекислоты из крови в альвеолярное пространство происходит, как известно, по законам диффузии. Установлено, что для того, чтобы молекулярный кислород соединился с гемоглобином, ему необходимо преодолеть тонкий слой жидкости на поверхности альвеолярных клеток, альвеолокапиллярную мембрану, представленную слоем альвеолярных и эндотелиальных клеток и находящимся между ними слоем волокнистых элементов и межуточного вещества соединительной ткани, слой плазмы крови и мембрану эритроцитов.

Углекислота проходит тот же путь, но в обратном направлении. Диффузионная способность легких зависит, главным образом, от толщины указанных слоев, а также от степени их проницаемости для газов. Кроме того, для нормального течения диффузии имеет значение общая площадь мембран, через которые проходят O2 и СO2, и время контакта крови с альвеолярным воздухом. Изменение одного из этих факторов может привести к развитию недостаточности дыхания.

Нарушение структуры альвеолокапиллярной мембраны.

В легких могут развиваться патологические процессы, сопровождающиеся утолщением стенки альвеол и капиллярных сосудов, увеличением количества соединительной ткани между ними (рис. 20.4). При этом увеличивается путь для диффузии газов, понижается проницаемость мембран – развивается альвеолокапиллярный блок. К возникновению альвеолокапиллярного блока ведут многие диффузные поражения легких – саркоидоз, пневмокониоз различной этиологии, фиброз, склеродермия, пневмония (хроническая или острая), эмфизема, отек легкого. Следует отметить, что при таких заболеваниях, как пневмония или недостаточность сердца в стадии декомпенсации, путь прохождения газов удлиняется вследствие увеличения количества жидкости в просвете легочных артериол, а также в тканях легкого.

Уменьшение площади мембран, через которые осуществляется диффузия, может наблюдаться при резекции доли легкого, при деструкции обширных участков легкого (кавернозный туберкулез, абсцесс), при полном прекращении вентиляции легочных альвеол (ателектаз) или при уменьшении поверхности капиллярной сети (эмфизема, легочный васкулит).

Уменьшение времени контакта крови с альвеолярным воздухом.

Время прохождения крови по капиллярным сосудам легочных альвеол составляет 0,6 – 0,7 с, а для полной диффузии газов достаточно всего 0,2 с. Однако такое время диффузии характерно для нормальной альвеолокапиллярной мембраны. Если же она изменена (о чем было сказано выше), то при значительном ускорении кровотока (при физической нагрузке, анемии, горной болезни и др.) газы не успевают в достаточном количестве диффундировать через альвеолокапиллярную мембрану, и тогда меньшее количество гемоглобина связывается с кислородом.

Следует отметить, что если в легких возникают процессы, затрудняющие диффузию, то они приводят к нарушению в первую очередь диффузии кислорода, поскольку углекислый газ диффундирует в 20 – 25 раз легче. Поэтому такие процессы часто сопровождаются гипоксемией без гиперкапнии.

Нарушение общих и регионарных вентиляционно-перфузионных отношений в легких

Для нормального течения газообмена в легких очень важно правильное соотношение вентиляции и кровотока. В покое у здорового человека эффективная альвеолярная вентиляция (АВ) равна 4 – 5 л, минутный объем крови – около 5 л, а соотношение альвеолярная вентиляция/ минутный объем крови (АВ/МО) составляет 0,8 – 1 (вентиляционно-перфузионный показатель). Именно такое соотношение и обеспечивает нормальный газовый состав крови, оттекающей от альвеол. В тех случаях, когда вентиляция начинает преобладать над кровотоком (АВ/МО › 1) из крови удаляется большее, чем обычно, количество углекислоты и развивается гипокапния. Если же вентиляция отстает от кровотока (АВ/МО ‹ 0,8), в альвеолярном воздухе будет увеличиваться парциальное давление СО2 и снижаться рO2, что приведет к развитию гипоксемии и гиперкапнии.

Для того чтобы газообмен в легких протекал нормально, оптимальное соотношение АВ/МО должно поддерживаться во всех альвеолах. Это означает, что во время дыхания вдыхаемый воздух и соответственно кровоток должны равномерно распределяться по всем легочным альвеолам. Однако полностью это условие не выполняется даже в норме; у здорового человека имеются отклонения в равномерности распределения как вентиляции, так и перфузии альвеол, находящихся в различных участках легких. Оказывается, что и вентиляция, и перфузия в нижних отделах легких преобладают над теми же показателями в верхних отделах. Кроме того, в верхних отделах вентиляция превышает кровоток, а в нижних кровоток преобладает над вентиляцией.

При заболеваниях легких к физиологической неравномерности вентиляции и кровотока может присоединиться и патологическая. Например, при пневмонии, эмфиземе, ателектазе или пневмосклерозе в результате вовлечения в патологический процесс кровеносных сосудов кровоток в капиллярных сосудах части альвеол резко снижается, а в других участках легкого – усиливается. Наблюдающиеся при этом нарушения эластичности легких или прохождения воздуха в дыхательных путях могут быть выражены в различных участках легких в неодинаковой степени, что приведет к неравномерной вентиляции альвеол. Кроме того, значительные нарушения газообмена могут возникать и оттого, что в хорошо вентилируемых альвеолах кровоток может быть слабым (альвеолярное мертвое пространство)1, а альвеолы, хорошо снабжаемые кровью, могут плохо вентилироваться (альвеолярное шунтирование крови)2. В то же время общая альвеолярная вентиляция и общий кровоток в легких могут существенно не изменяться. На рис. 20.3 показано, как существенно могут изменяться вентиляционно-перфузионные отношения в подобных случаях. При этом видно, что высокое вентиляционно-перфузионное отношение приводит лишь к небольшому повышению оксигенированности крови, тогда как низкое вызывает ее значительное снижение, что в итоге приводит к уменьшению содержания кислорода в крови, оттекающей от данного участка легкого.

Необходимо отметить, что в легких существует феномен гипоксической вазоконстрикции. Суть его заключается в том, что при снижении р02 в альвеолярном воздухе (а не в крови) наблюдается сокращение гладких мышц стенок артериол в гипоксической зоне. Точный механизм этой реакции неизвестен, но показано, что она происходит в изолированных легких и, следовательно, не зависит от центральной нервной системы. Есть предположение, что клетки околососудистых тканей в ответ на гипоксию выделяют некие сосудосуживающие вещества. Благодаря гипоксической вазоконстрикции уменьшается кровоснабжение плохо вентилируемых участков легких, появляющихся, например, в результате бронхиальной обструкции. Такое уменьшение улучшает общий газообмен, поскольку при этом выравнивается соотношение между альвеолярной вентиляцией и перфузией, уменьшается альвеолярное шунтирование крови. Во время внутриутробного периода сопротивление легочных сосудов у плода очень велико, главным образом благодаря гипоксической вазоконстрикции, и через легкие протекает лишь около 15% сердечного выброса. При рождении после первого вдоха в альвеолы поступает О2, сопротивление сосудов падает и легочный кровоток мгновенно возрастает.