Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока

Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рас­смотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н (см. (133.10)), введя в ее правую часть полный ток Iполн = jполнdS сквозь поверхность S, натянутую на замкнутый контур L. Тогдаобобщенная теорема о циркуляции вектора Н запишется в виде

(138.4)

Выражение (138.4) справедливо всегда, свидетельством чего является полное соответст­вие теории и опыта.

§ 139. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зре­ния не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

В основе теории Максвелла лежат рассмотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQ +ЕB. Так как цир­куляция вектора ЕQ равна нулю (см. (137.3)), а циркуляция вектора ЕB определяется выражением (137.2), то циркуляция вектора напряженности суммарного поля

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущими­ся зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D (см. (89.3)):

(139.1)

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвелла в интегральной форме:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

где e0 и m0 — соответственно электрическая и магнитная постоянные, e и m — соответст­венно диэлектрическая и магнитная проницаемости, g — удельная проводимость веще­ства.

Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Мак­свелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (E=const и B=const) уравнения Максвелла примут вид

т.е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему уравнении Максвелла в дифференциальном форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная и дифференциальная — эквивалентны. Однако если имеются поверхности разрыва – поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений является более общей.

Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму допол­няют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов проводимости).

Уравнения Максвелла — наиболее общие уравнения для электрических и магнит­ных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что перемен­ное магнитное поле всегда связано с порождаемым им электрическим полем, а пере­менное электрическое поле всегда связано с порождаемым им магнитным, т. е. элект­рическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщением основных законов электрических и магнит­ных явлений, не только смогла объяснить уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения (см. § 138), что позволило Максвеллу предсказать существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3×108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла. Таким образом, теория Максвелла была экс­периментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйн­штейна, так как факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относи­тельности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и элект­ромагнитные явления во всех инерциальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инвариантны относительно преобразований Лоренца: их вид не меняется при переходе от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным правилам.

Из принципа относительности вытекает, что отдельное рассмотрение электрического и магнитного полей имеет относительный смысл. Taк, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, движутся относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвижный относительно одной инерциальной системы отсчета про­водник с постоянным током, возбуждая в каждой точке пространства постоянное магнитное поле, движется относительно других инерциальных систем, и создаваемое им переменное магнитное поле возбуждает вихревое электрическое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а также принцип относительности Эйнштейна приводят к единой теории электрических, маг­нитных и оптических явлений, базирующейся на представлении об электромагнитном поле.

 

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

Колебаниями называются движения или процессы, которые характеризуются опреде­ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро­магнитные и др. Однако различные колебательные процессы описываются одинаковы­ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Рэлеем (1842—1919), А. Г. Столетовым, русским инжене­ром-экспериментатором П. Н. Лебедевым (1866—1912). Большой вклад в развитие теории колебаний внесли Л. И. Мандельштам (1879—1944) и его ученики.

Колебания называютсясвободными (илисобственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воз­действий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являютсягармонические колебания — колебания, при которых колеб­лющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колеба­ния величины s описываются уравнением типа

(140.1)

где А — максимальное значение колеблющейся величины, называемоеамплитудой колебания, w0круговая (циклическая) частота, j —начальная фаза колебания в мо­мент времени t=0, (w0t+j) — фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до –1, то s может принимать значения от до –А.

Определенные состояния системы, совершающей гармонические колебания, повто­ряются через промежуток времени Т, называемыйпериодом колебания, за который фаза колебания получает приращение 2p, т. е.

откуда

(140.2)

Величина, обратная периоду колебаний,

(140.3)

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (140.2) и (140.3), получим

Единица частоты —герц (Гц): 1 Гц — частота периодического процесса, при кото­рой за 1 с совершается один цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющей­ся величины s:

(140.4)

(140.5)

т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (140.4) и (140.5) соответственно равны Аw0 и Аw . Фаза величины (140.4) отличается от фазы величины (140.1) на p/2, а фаза величины (140.5) отличается от фазы величины (140.1) на p. Следовательно, в моменты времени, когда s=0, ds/dt приобрета­ет наибольшие значения; когда же s достигает максимального отрицательного значе­ния, то d2s/dt2 приобретает наибольшее положительное значение (рис. 198).

Из выражения (140.5) следуетдифференциальное уравнение гармонических колебаний

(140.6)

(где s = A cos (w0t+j)). Решением этого уравнения является выражение (140.1).

Гармонические колебания изображаются графическиметодом вращающегося век­тора амплитуды,илиметодом векторных диаграмм. Для этого из произвольной точ­ки О, выбранной на оси х, под углом j, равным начальной фазе колебания, откладыва­ется вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199). Если этот вектор привести во вращение с угловой скоростью w0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения от –А до +А, а колеблющаяся величина будет изменяться со временем по закону s=A cos (w0t+j). Таким образом, гармоническое колебание мож­но представить проекцией на некоторую произвольно выбранную ось вектора амп­литуды А, отложенного из произвольной точки оси под углом j, равным начальной фазе, и вращающегося с угловой скоростью w0 вокруг этой точки.

В физике часто применяется другой метод, который отличается от метода враща­ющегося вектора амплитуды лишь по форме. В этом методе колеблющуюся величину представляюткомплексным числом. Согласно формуле Эйлера, для комплексных чисел

(140.7)

где — мнимая единица. Поэтому уравнение гармонического колебания (140.1) можно записать в комплексной форме:

(140.8)

Вещественная часть выражения (140.8)

представляет собой гармоническое колебание. Обозначение Re вещественной части условимся опускать и (140.8) будем записывать в виде

В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.

§ 141. Механические гармонические колебания

Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x:

(141.1)

Согласно выражениям (140.4) в (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

(141.2)

Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (1412) равна

Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).

Кинетическая энергия материальной точки, совершающей прямолинейные гармони­ческие колебания, равна

(141.3)

или

(141.4)

Потенциальная энергияматериальной точки, совершающей гармонические колеба­ния под действием упругой силы F, равна

(141.5)

или

(141.6)

Сложив (141.3) и (141.5), получим формулу дляполной энергии:

(141.7)

Полная энергия остается постоянной, так как при гармонических колебаниях справе­длив закон сохранения механической энергии, поскольку упругая сила консервативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2w0, т. е. с частотой, которая в два раза превышает частоту гармонического колебания. На рис. 200 представлены графики зависимости x, T и П от времени. Так как ásin2añ = ácos2añ = 1/2, то из формул (141.3), (141.5) и (14l.7) следует, что áTñ = áПñ = ½ E.

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

Гармоническим осциллятором называется система, совершающая колебания, описыва­емые уравнением вида (140.6);

(142.1)

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классичес­кой и квантовой физики. Примерами гармонического осциллятора являются пружин­ный, физический и математический маятники, колебательный контур (для токов и на­пряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F = –kx, где k —жесткость пружины. Уравнение движения маятника

Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармоничес­кие колебания по закону х=А соs (w0t + j) с циклической частотой

(142.2)

и периодом

(142.3)

Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняет­ся закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна

2. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).

Если маятник отклонен из положения равновесия на некоторый угол a, то в соот­ветствии с уравнением динамики вращательного движения твердого тела (18.3) момент M возвращающей силы можно записать в виде

(142.4)

где J — момент инерции маятника относительно оси, проходящей через точку подве­са О, l – расстояние между ней и центром масс маятника, Ft= –mg sina » –mga. — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina »a соответствует малым колебаниям маятника, т.е. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде

Принимая

(142.5)

получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

(142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см. (142.5)) и периодом

(142.7)

где L=J/(ml)приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим

т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса

станет новым центром качаний, и период колебаний физичес­кого маятника не изменится.

3. Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеб­лющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника

(142.8)

где l — длина маятника.

Так как математический маятник можно представить как частный случай физичес­кого маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (1417), получим выражение для периода малых колебаний математического маятника

(142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физичес­кого маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с пери­одом колебаний данного физического маятника.

§ 143. Свободные гармонические колебания в колебательном контуре

Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменя­ются и которые сопровождаются взаимными превращениями электрического и магнит­ного полей. Для возбуждения и поддержания электромагнитных колебаний использует­сяколебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Рассмотрим последовательные стадии колебательного процесса в идеализирован­ном контуре, сопротивление которого пренебрежимо мало (0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Тогда в начальный момент времени t=0 (рис. 202, а) между обкладками конденсатора возникнет электрическое поле, энергия которого Q2 (см. (95.4)). Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна воз­растать.

Так как 0, то, согласно закону сохранения энергии, полная энергия

таккак она на нагревание не расходуется. Поэтому в момент t=¼T, когда конден­сатор полностью разрядится, энергия электрического поля обращается в нуль, а энер­гия магнитного поля (а следовательно, и ток) достигает наибольшего значения (рис. 202, б). Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 202, в). Далее те же процессы начнут протекать в обратном направлении (рис. 202, г) и система к моменту времени t=Т придет в первоначальное состояние (рис. 202, а). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора. Если бы потерь энергии не было, то в контуре совершались бы периодические незатухающие колебания, т.е. периодически изменялись (колеба­лись) бы заряд Q на обкладках конденсатора, напряжение U на конденсаторе и сила тока I, текущего через катушку индуктивности. Следовательно, в контуре возникают электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.

Электрические колебания в колебательном контуре можно сопоставить с механи­ческими колебаниями маятника (рис. 202 внизу), сопровождающимися взаимными превращениями потенциальной и кинетической энергий маятника. В данном случае энергия электрического поля конденсатора (Q2/(2C)) аналогична потенциальной энер­гии маятника, энергия магнитного поля катушки (LQ2/2) кинетической энергии, сила тока в контуре — скорости движения маятника. Индуктивность L играет роль массы т, а сопротивление контура — роль силы трения, действующей на маятник.

Согласно законуОма, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R,

где IR—напряжение на резисторе, Uc=Q/C—напряжение на конденсаторе, – э.д.с. самоиндукции, возникающая в катушке при протекании в ней переменного тока ( – единственная э.д.с. в контуре). Следовательно,

(143.1)

Разделив (143.1) на L и подставив получим дифференциальное уравнение колебаний заряда Q в контуре:

(143.2)

В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассматриваемые колебания представляют собой свободные колебания (см. §140). Если со­противление R=0, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре.

Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону

(143.3)

где Qm — амплитуда колебаний заряда конденсатора с циклической частотой w0, называемой собственной частотой контура, т. е.

(143.4)

и периодом

(143.5)

Формула (143.5) впервые была получена У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (см. (140.4))

(143.6)

где Im=w0Qm амплитуда силы тока. Напряжение на конденсаторе

(143.7)

где Um=Qm/C—амплитуда напряжения.

Из выражений (143.3) и (143.6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на p/2, т.е., когда ток достигает максимального значения, заряд (а также и напряжение (см. (143.7)) обращается в нуль, и наоборот.

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис. 203). Tax как векторы A1 и А2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2—j1)между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет

(144.1)

В выражении (144.1) амплитуда А и начальная фаза j соответственно задаются соотношениями

(144.2)

Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направле­нии и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2—j1) складываемых колебаний.

Проанализируем выражение (144.2) в зависимости от разности фаз (j2—j1):

1) j2—j1 = ±2mp (т=0, 1, 2, ...), тогда A=A1+A2, т. е. амплитуда результиру­ющего колебания А равнасумме амплитуд складываемых колебаний;

2) j2—j1 = ±(2m+1)p (т=0, 1, 2, ...), тогда A=|A1–A2|, т. е. амплитуда резуль­тирующего колебания равна разности амплитуд складываемых колебаний.

Для практики особый интерес представляет случай, когда два складываемых гар­монических колебания одинакового направления мало отличаются по частоте. В ре­зультате сложения этих колебаний получаются колебания с периодически изменяющей­ся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называютсябиениями.

Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем

(144.3)

Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой w, амплитуда Аб, которого изменяется по следующему периодическому закону:

(144.4)

Частота изменения Аб в два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний:

Период биений

Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меня­ющейся по уравнению (144.4) амплитуды.

Определение частоты тона (звука определенной высоты (см. § 158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.

Любые сложные периодические колебания s=f(t) можно представить в виде супер­позиции одновременно совершающихся гармонических колебаний с различными амп­литудами, начальными фазами, а также частотами, кратными циклической частоте w0:

(144.5)

Представление периодической функции в виде (144.5) связывают с понятиемгар­монического анализа сложного периодического колебания,илиразложения Фурье.*Слагаемые ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, 3w0, ..., называютсяпервой (или основной),второй, третьейи т. д.гармониками сложно­го периодического колебания.

* Ж. Фурье (1768—1830) — французский ученый.

 

§ 145. Сложение взаимно перпендикулярных колебаний

Рассмотрим результат сложения двух гармонических колебаний одинаковой час­тоты w, происходящих во взаимно перпендикулярных направлениях вдоль осей х и у. Для простоты начало отсчета выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем

(145.1)

где a — разность фаз обоих колебаний, А и В — амплитуды складываемых колебаний. Уравнение траектории результирующего колебания находится исключением из выражений (145.1) параметра t. Записывая складываемые колебания в виде

и заменяя во втором уравнении coswt на х/А и sinwt на , получим после несложных преобразований уравнение эллипса, оси которого ориентированы относите­льно координатных осей произвольно:

(145.2)

Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.

Ориентация эллипса и размеры его осей зависят от амплитуд складываемых колебаний и разности фаз a. Рассмотрим некоторые частные случаи, представляющие физический интерес:

1) a = mp(m=0, ±1, ±2, ...). В данном случае эллипс вырождается в отрезок прямой

(145.3)

где знак плюс соответствует нулю и четным значениям т (рис. 205, а), а знак минус — нечетным значениям т (рис. 205, б). Результирующее колебание является гармоническим колебанием с частотой w и амплитудой , совершающимся вдоль прямой (145.3), составляющей с осью х угол j=arctg . В данном случае имеем дело слинейно поляризованными колебаниями;

2) a = (2m+1) (m=0, ± 1, ±2,...). В данном случае уравнение примет вид

(145.4)

Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны соответствующим амплитудам (рис. 206). Кроме того, если А=В, то эллипс (145.4) вырождается в окружность. Такие колебания называютсяциркулярно поляризо­ванными колебаниями иликолебаниями, поляризованными по кругу.

Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующего колебания довольно сложна. Замкнутые тра­ектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу.* Вид этих кривых зависит от соотношения амплитуд, частот и разности фаз складываемых колебаний. На рис. 207 представлены фигуры Лиссажу для различных соотношений частот (указаны слева) и разностей фаз (указаны вверху; разность фаз принимается равной j).

* Ж. Лиссажу (1822—1880) — французский физик.

 

Отношение частот складываемых колебаний равно отношению числа пересечений фигур Лиссажу с прямыми, параллельными осям координат. По виду фигур можно определить неизвестную частоту по известной или определить отношение частот складываемых колебаний. Поэтому анализ фигур Лиссажу — широко используемый метод исследования соотношений частот и разности фаз складываемых колебаний, а также формы колебаний.

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омичес­ких потерь и излучения электромагнитной энергии в электрических колебательных системах.

Закон затухания колебаний определяется свойствами колебательных систем. Обыч­но рассматривают линейные системы — идеализированные реальные системы, в кото­рых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентич­ными линейными дифференциальными уравнениями, что позволяет подходить к изуче­нию колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.

Дифференциальное уравнение свободных затухающих колебанийлинейной системы задается в виде

(146.1)

где s – колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w0 — циклическая частота свободных незатуха­ющих колебаний той же колебательной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (146.1) рассмотрим в виде

(146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и под­становки их в (146.1) получим

(146.3)

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот коэффициент положителен:

(146.4)

(если ( )>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1) ü+w2и=0, решением которого является функция и=А0cos(wt+j)(см. (140.1)). Таким образом, решение уравнения (146.1) в случае малых затуханий ( )

(146.5)

где

(146.6)

— амплитуда затухающих колебаний, а А0 начальная амплитуда. Зависимость (146.5) показана на рис. 208 сплошной линией, а зависимость (146.6) — штриховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называетсявременем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периодакак промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затуха­ющих колебаний с учетом формулы (146.4) равен

Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответст­вующих моментам времени, отличающимся на период, то отношение

называетсядекрементом затухания, а его логарифм

(146.7)

— логарифмическим декрементом затухания; Ne число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — по­стоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятиемдобротности Q, которая при малых значениях логарифмического декремента равна

(146.8)

(так как затухание мало ( ), то T принято равным Т0).

Из формулы (146.8) следует, что добротность пропорциональна числу колебаний Ne, совершаемых системой за время релаксации.

Выводы, полученные для свободных затухающих колебаний линейных систем, применимы для колебаний различной физической природы — механических (в качестве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический колебательный контур).

1. Свободные затухающие колебания пружинного маятника. Для пружинного маят­ника (см. § 142) массой т, совершающего малые колебания под действием упругой силы F= —kx, сила трения пропорциональна скорости, т. е.

где rкоэффициент сопротивления; знак минус указывает на противоположные напра­вления силы трения и скорости

При данных условиях закон движения маятника будет иметь вид

(146.9)

Используя формулу w0= (см. (142.2)) и принимая, что коэффициент затухания

(146.10)

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих коле­баний маятника:

Из выражений (146.1) и (146.5) вытекает, что колебания маятника подчиняются закону

где частота (см. (146.4)).

Добротность пружинного маятника, согласно (146.8) и (146.10), Q= /r.

2. Свободные затухающие колебания в электрическом колебательном контуре. Диф­ференциальное уравнение свободных затухающих колебаний заряда в контуре (при 0) имеет вид (см. (143.2))

Учитывая выражение (143.4) и принимая коэффициент затухания

(146.11)

дифференциальное уравнение (143.2) можно записать в идентичном уравнению (146.1) виде

Из выражений (146.1) и (146.5) вытекает, что колебания заряда совершаются по закону

(146.12)

с частотой, согласно (146.4),

(146.13)

меньшей собственной частоты контура w0 (см. (143.4)). При R=0 формула (146.13) переходит в (143.4).

Логарифмический декремент затухания определяется формулой (146.7), а добротность колебательного контура (см. (146.8))

(146.14)

В заключение отметим, что при увеличении коэффициента затухания d период затухающих колебании растет и при d=w0 обращается в бесконечность, т. е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптоти­чески приближается к нулю, когда t®¥. Процесс не будет колебательным. Он называется апериодическим.

Огромный интерес для техники представляет возможность поддерживать колеба­ния незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний опре­деляются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний (см. § 147), происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энер­гии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опуска­ющегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струёй.

Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т. д.

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющего по гармоническому закону:

Если рассматривать механические колебания, то роль X(t) играет внешняя вынуж­дающая сила

(147.1)

С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде

Используя (142.2) и (146.10), придем к уравнению

(147.2)

Если рассматривать электрический колебательный контур, то роль X(t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение

(147.3)

Тогда уравнение (143.2) с учетом (147.3) можно записать в виде

Используя (143.4) и (146.11), придем к уравнению

(147.4)

Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическимии вынужденными электромагнитными колебаниями.

Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференци­альному уравнению

(147.5)

применяя впоследствии его решение для вынужденных колебаний конкретной физичес­кой природы (x0 в случае механических колебаний равно F0/m, в случае электромагнит­ных — Um/L).

Решение уравнения (147.5) равно сумме общего решения (146.5) однородного урав­нения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме (см. § 140). Заменим правую часть уравнения (147.5) на комплексную величину х0 :

(147.6)

Частное решение этого уравнения будем искать в виде

Подставляя выражение для s и его производных в уравнение (147.6), получаем

(147.7)

Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что h=w. Учитывая это, из уравнения (147.7) найдем величину s0 и умножим ее числитель и знаменатель на

Это комплексное число удобно представить в экспоненциальной форме:

где

(147.8)

(147.9)

Следовательно, решение уравнения (147.6) в комплексной форме примет вид

Его вещественная часть, являющаяся решением уравнения (147.5), равна

(147.10)

где А и j задаются соответственно формулами (147.8) и (147.9).

Таким образом, частное решение неоднородного уравнения (147.5) имеет вид

(147.11)

Решение уравнения (147.5) равно сумме общего решения однородного уравнения

(147.12)

(см. (146.5)) и частного решения (147.11). Слагаемое (147.12) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (147.8). Графически вынужденные колебания представлены на рис. 209. Следовательно, в установившемся режиме вынужденные колебания происходят с частотой w и являют­ся гармоническими; амплитуда и фаза колебаний, определяемые выражениями (147.8) и (147.9), также зависят от w.

Запишем формулы (147.10), (147.8) и (147.9) для электромагнитных колебаний, учитывая, что (см. (143.4)) и (см. (146.11)):

(147.13)

Продифференцировав Q=Qmcos(wt–a) по t, найдем силу тока в контуре при устано­вившихся колебаниях:

(147.14)

где

(147.15)

Выражение (147.14) может быть записано в ввде

где j=a p/2 — сдвиг по фазе между током и приложенным напряжением (см. (147.3)). В соответствии с выражением (147.13)

(147.16)

Из формулы (147.16) вытекает, что ток отстает по фазе от напряжения (j>0), если wL>1/(wС), и опережает напряжение (j<0), если wL<1/(wС).

Формулы (147.15) и (147.16) можно также получить с помощью векторной диаграм­мы. Это сделано в §149 для переменных токов.

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты w. Меха­нические и электромагнитные колебания будем рассматривать одновременно, называя колеблющуюся величину либо смещением (х) колеблющегося тела из положения равновесия, либо зарядом (Q) конденсатора.

Из формулы (147.8) следует, что амплитуда А смещения (заряда) имеет максимум. Чтобы определить резонансную частоту wрез, — частоту, при которой амплитуда А сме­щения (заряда) достигает максимума, — нужно найти максимум функции (147.8), или, что то же самое, минимум подкоренного выражения. Продифференцировав подкорен­ное выражение по w и приравняв его нулю, получим условие, определяющее wрез:

Это равенство выполняется при w=0, ± , у которых только лишь положи­тельное значение имеет физический смысл. Следовательно, резонансная частота

(148.1)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к ча­стоте, равной или близкой собственной частоте колебательной системы, называется резонансом (соответственномеханическим илиэлектрическим). При значение wрез практически совпадает с собственной частотой w0 колебательной системы. Подста­вляя (148.1) в формулу (147.8), получим

(148.2)

На рис. 210 приведены зависимости амплитуды вынужденных колебаний от часто­ты при различных значениях d. Из (148.1) и (148.2) вытекает, что чем меньше d, тем выше и правее лежит максимум данной кривой. Если w® 0, то все кривые (см. также (147.8)) достигают одного в того же, отличного от нуля, предельного значения , которое называют статическим отклонением. В случае механических колебаний , в случае электромагнитных – Um/(L ). Если w®¥, то вое кривые асимптотически стремятся к нулю. Приведенная совокупность кривых называется резонансными кривыми.

Из формулы (148.2) вытекает, что при малом затухании ( ) резонансная амплитуда смещения (заряда)

где Q — добротность колебательной системы (см. (146.8)), рассмотренное выше статическое отклонение. Отсюда следует, что добротность Q характеризует резонансные свойства колебательной системы: чем больше Q, тем больше Арез.

На рис. 211 представлены резонансные кривые для амплитуды скорости (тока). Амплитуда скорости (тока)

максимальна при wрез=w0 и равна , т. е. чем больше коэффициент затухания d, тем ниже максимум резонансной кривой. Используя формулы (142.2), (146.10) и (143.4), (146.11), получим, что амплитуда скорости при механическом резонансе равна

а амплитуда тока при электрическом резонансе

Из выражения tgj = (см. (147.9)) следует, что если затухание в системе отсутствует (d=0), то только в этом случае колебания и вынуждающая сила (прило­женное переменное напряжение) имеют одинаковые фазы; во всех других случаях j ¹0.

Зависимость j от w при разных коэффициентах d графически представлена на рис. 212, из которого следует, что при изменении w изменяется и сдвиг фаз j. Из формулы (147.9) вытекает, что при w=0 j