Логарифм. дикримент затух В2-7

Ел.струм в електроліт

Серед дво- або багатокомпонентних рідких сумішей виділяють електро­літи. У широкому розумінні слова це речовини, які мають іонний механізм провідності, їх часто називають про­відниками другого роду. Найбільш ти­повими представниками електролітів є водні розчини неорганіч­них кислот (НС1, Н24, НМО3), лугів (КаОН, КОН, Са(ОН)2), солей (КаСІ, А^63, СІІ5О4). Замість води розчинниками можуть бути спирти або неорганічні рідини (гексан, діоксан, бензол тощо). Такі розчини солей, кислот, лугів також мають іонну провідність, але їхня електропровідність значно менша від електропровідності вод­них електролітів. Зазначимо, що не всі водні розчини речовин є елек­тролітами. Наприклад, розчин цукру у воді не є електролітом і не проводить електрики.

Впорядкований рух іонів (струм) в електролітах відбувається під дією електричного поля, яке створюється джерелом струму, під’єднаним до електродів, опущених в електроліт.

Явище розпаду речовини на різнойменне заряджені іони під дією розчинни­ка називають електролітичною дисоціацією.

 

В19

Взаємоіндукція В5-8

Норм і ненорм дисперсія

Під дисперсією світла розуміємо явища, обумовлені залежністю коефіцієнта заломлення речовини від довжини світлової хвилі. Ця залежність характеризується функцією

(23.1)

де - довжина світлової хвилі у вакуумі.

Розглянемо ще одну величину – дисперсію речовини, що визначає як швидко змінюється коефіцієнт заломлення зі зміною довжини хвилі:

(23.5)

З рис.51 слідує, що показник заломлення для прозорих речовин зі зменшенням довжини хвилі монотонно збільшується, отже, і величина також зі зменшенням по модулю збільшується. Таку дисперсію називають нормальною. З цією точки зору, як буде показано далі, хід кривої поблизу ліній і поліс поглинання не є нормальним ( зменшується при зменшенні довжини хвилі) і тому отримав назву аномальної дисперсії.

З-н Біо-Саварв –лапласа В3-5

 

В20

Намагніч магнетиків В4-3

Люмінісценція

Люмінесценцією називається освітлення тіл, надлишкове при даній температурі над тепловими і з більшою тривалістю ніж світлові коливання.

Робота виходу електрона

Робо́та ви́ходу — найменша кількість енергії, яку необхідно надати електрону для того, щоб вивести його з твердого тіла у вакуум.

Робота виходу є характеристикою речовини.

Для виходу за межі твердого тіла електрон повинен подолати силу притягання позитивно зарядженої кристалічної ґратки. Тому для виходу з твердого тіла електрон повинен мати певну характерну для даного твердого тіла енергію. Цю енергію він може надбати різними способами: випадково внаслідок теплового руху (термоелектронна емісія, поглинаючи квант світла (фотоефект), в зовнішньому електричному полі. Величина цієї мінімально необхідної енергії отримала назву роботи виходу.

 

В21

З-н Ампера В4-2

Принцип Гюг-Френ.

Теорема Гаусса В2-5

В22

Сила, густина струму

Кількісною характеристикою електричного струму є величина заряду, що переноситься через поверхню, яка розглядається на одиницю часу. Ця величина називається силою струму.

. (7.1)

Електричний струм може бути розподілений по поверхні, по якій він тече нерівномірно. Більш детально струм характеризується за допомогою вектора густини струму, який чисельно дорівнює силі струму dI, який протікає через розташовану в даній точці, перпендикулярну напряму руху носіїв поверхню dS

. (7.2)

За напрямок вектора густини струму приймається напрям вектора швидкості впорядкованого руху позитивних зарядів. Знаючи вектор j у кожній точці простору, можна знайти силу струму через будь-яку поверхню.

. (7.3)

1 Кл – це такий заряд, який за 1 с проходить через переріз провідника при силі струму 1 А.

2. Природа феромагнеттиків В4-8

Стр. в газах

Загалом гази не проводять електричний струм або мають низьку електропровідність, оскільки їхні молекули нейтральні, проте якщо частина атомів газу йонізується, він стає здатним до проводження електричного струму. В газах також можливі газові розряди або при іонізації зовнішнім джерелом, або внаслідок ударної іонізації в самому розряді.

Один із видів йонізації газів — термічна йонізація. При цьому атоми газу йонізуються за рахунок зіткнень між атомами внаслідок підвищення температури — атоми набувають кінетичної енергії, достатньої для звільнення електрона від атома. Проте температури, за яких атоми газів набувають достатньої кінетичної енергії, високі (наприклад, для водню це значення 6 000 К).

Другий вид йонізації газів — йонізація електричним ударом. Дана йонізація відбувається і при низьких температурах внаслідок перевищення напруженості електричного поля в газі певного значення, що зумовлює вихід електрона з атома. Іноді виникають також самостійні електричні розряди, що зумовлюється зіткненням фотонів або позитивних йонів з катодом і ланцюгове повторення реакції, в процесі чого також відбувається збудження атомів газу. Прикладом самостійного електричного розряду є блискавка. Гази, молекули яких за йонізації перетворюються на суміш йонів та електронів, називаються плазмою.

При нагріванні катода електричним розрядом з великою силою струму відбувається його нагрівання до міри термоелектронної емісії електронів з нього (дуговий розряд).