Последствия загрязнения воздуха

В современной городской атмосфере особенно опасным для здоровья загрязнителем может быть О3. Основной особенностью озона является его способность разрушать двойные связи высокомолекулярных соединений. В частности, полимерным материалом с большим количеством двойных связей является резина, которая повреждается и трескается под воздействием О3. Покрышки и щетки стеклоочистителей особенно чувствительны к окислителям, несмотря на то, что новейшие синтетические резины имеют двойные связи, защищенные другими химическими группами, которые делают их более устойчивыми к разрушению посредством О3.

Многие пигменты и красители также разрушаются О3. Обычно это приводит к тому, что краска блекнет. Поэтому в художественных галереях загрязненных городов необходимо фильтровать воздух, особенно в помещениях, где находятся коллекции картин, написанных с использованием обычных красящих веществ, наиболее чувствительных к О3. Оксиды азота также могут повреждать пигменты. Возможно, что оксиды азота увеличивают скорость разрушения строительных камней, но недостаточно ясно, как это происходит. Некоторые исследователи высказывали мнение, что NO2 увеличивает эффективность образования H2SO4 на поверхности камней в городах с умеренными концентрациями SO2:

 

S02 + N02 + Н20 à N0+ Н2 S04

 

Другие исследователи предполагали, что соединения азота в загрязненной атмосфере способствовали более эффективному росту микроорганизмов на поверхности камней и увеличивали биологически опосредованное разрушение. Существует также возможность того, что в результате протекания реакций в газовой фазе образуется HNO3, которая непосредственно и воздействует на карбонатные породы.

Процессы удаления

 

Мы уже рассмотрели важность радикала *ОН как ключевой единицы, стимулирующей протекание реакций в атмосфере. Именно окисление с участием кислорода и оксидов азота является основным процессом трансформаций, происходящих в атмосфере. Можно утверждать, что в результате протекания реакций в атмосфере микрокомпонентные газы окисляются.

Окисление неметаллов приводит к накоплению кислых соединений, и именно это объясняет ту легкость, с которой происходит окисление в атмосфере. Соединения углерода могут быть окислены до органических соединений, таких, как муравьиная кислота (НСООН) или уксусная кислота (СН3СООН), или, более полно, до угольной кислоты (Н2СОз, т, е. растворенной углекислоты). Из соединений серы может образовываться H2SO4 или, в случае некоторых органических соединений серы, метилсульфоновая кислота (СНзSОзН). Соединения азота могут быть, в конце концов, окислены до HNO3.

Растворимость многих из этих соединений в воде делает дождь эффективным механизмом удаления их из атмосферы. Этот процесс известен как «вымывание».

Важно отметить, что даже в отсутствие SO2 атмосферные капельки будут иметь кислую реакцию из-за растворения СO2. Это имеет значение в геохимии выветривания (см. далее). Однако SO2 действительно вносит существенный вклад в кислотность атмосферных капелек. Она может, создавать кислотные дожди. Однако рассмотрим последовательность реакций, которые могут вызвать гораздо более сильное подкисление:

 

H2O2 + НSОз- à SO42- + Н+ + Н2О

O3 + НSОз- à SО42- + Н+ + O

Перекись водорода и озон являются сильными природными окислителями, присутствующими в дождевой воде. Потенциально эти окислители могут окислить почти всю SO2 в некотором объеме воздуха. В таких условиях дождевая вода вполне может иметь значения рН ниже 3. Это иллюстрирует возможные высокие концентрации кислоты в атмосфере в результате того, что следовые загрязнители переходят из газовой фазы в капельки. Жидкая вода в атмосфере имеет объем примерно в миллион раз меньший, чем газовая фаза; таким образом, в результате растворения происходит существенное увеличение концентрации.

После того как вода падает на землю, может иметь место дальнейшее повышение концентрации, если вода замерзнет в виде снега. В процессе таяния снега происходит преимущественная потеря растворенных ионов, поскольку они стремятся накапливаться снаружи зерен льда, из которых состоят сугробы. Это означает, что на ранних стадиях таяния выносится именно растворенная H2SO4. Возможна ее 20-кратная концентрация.

Весной, когда тает первый снег, это имеет серьезные последствия для водных организмов и, особенно для их потомства.

Для газообразных загрязнителей или частиц возможен и прямой вынос из атмосферы на поверхность земли в процессе, известном как сухое осаждение. Он может иметь место на земле или на море, но все равно называется «сухим осаждением». На самом деле это не совсем правильное употребление термина, поскольку поверхности, доступные для сухого осаждения, наиболее эффективны, когда они увлажнены.

 

И предыдущем разделе мы начали рассматривать влияние человека на атмосферу. Изменения, вызванные человеком, значительны, хотя иногда и неуловимы в глобальном масштабе.

Именно в атмосфере городов влияние человека выражено наиболее ярко, поэтому протекающие здесь химические процессы необходимо рассмотреть как отдельный случай. В городской среде присутствуют загрязняющие вещества, непосредственно выброшенные в атмосферу, они называются первичными загрязнителями. Дым — это наглядный пример первичного загрязнителя. Многие соединения, однако, подвергаются реакциям в атмосфере, как видно из предыдущего раздела. Продукты таких реакций называются вторичными загрязнителями.

Таким образом, многие первичные загрязнители могут вступать в реакции с образованием вторичных. Именно различие между первичным и вторичным загрязнением лежит в основе понимания разницы между двумя отдельными типами загрязнения воздуха, оказывающими влияние на наиболее крупные города.