П. 1.7. ТЕОРЕМА ПОЛНОЙ ВЕРОЯТНОСТИ. ФОРМУЛА БАЙЕСА

Приведенная ниже формула объединяет теоремы сложения и умножения. Вероятность события A, которое может произойти при условии осуществления одного из несовместных событий В1, В2, В3, ... Bn, образующих полную группу, определяется формулой

(1.7.1)

Для наступления события A необходимо и достаточно наступления или события AB1, или события АВ2, или события АВ3, ..., или события ABn,

А=АВ1+АВ2+АВ3+…+АВп

Так как события АВi несовместны, то поэтому (1.7.2)

Пример. Азотное удобрение поступает на склад хозяйства из пункта 1 и пункта 2, причем, из 1-го пункта в 2 раза больше, чем из 2-го. Вероятность события = {удобрение из первого пункта удовлетворяет стандарту}0,9, а соответствующая вероятность для второго пункта равна 0,7.Определить вероятность события А = {взятое для пробы на складе хозяйства удобрение удовлетворяет стандарту}.

Решение. Обозначим

событие В1 = {удобрение поступило из пункта 1};

событие В2 = {удобрение поступило из пункта 2};

Находим

, , , ;

 

Событие А имеет большую вероятность, оно практически достоверно, т. е. наступит в среднем в 83 случаях из 100.

Формула Байеса. Рассмотрим следующую задачу. На фермах А и В произошла вспышка заболевания ящуром. Доли заражения скота составляют соответственно 1/6 и 1/4. Случайным образом отобранное из одной фермы животное оказалось заболевшим. Найти вероятность события = {животное выбрано из фермы А}. Обозначим:

А = {отобранное животное заражено};

событие В1 = {животное выбрано из фермы А}, Р(B1) = 0,5;

событие В2 = {животное выбрано из фермы В}, Р(B2) = 0,5;

А/В1 = {животное, отобранное из фермы А, заражено};

A/B2 = {животное, отобранное из фермы В, заражено}.

Вероятность события = {животное выбрано из фермы А и заражено} можно записать в виде Р(А)∙Р(В1/А) = P(B1)∙Р(А/В1), откуда

(*)

или

Заменив в (*) Р(А) на , получим

· (**)

Формула (**) является частным случаем формулы Байеса.

Рассмотрим задачу в общем виде. Пусть в результате испытания произошло событие А, которое могло наступить только вместе с каждым из событий B1, В2, В3,..., Вп, образующих полную группу; P(B1), Р(В2), ... , Р(Вп) заранее известны. Требуется найти вероятности событий В1, B2,..., Вп после испытания, когда событие А уже имело место, т. е. P(Bi/A), i=1, 2, ..., п.

Проводя рассуждения, аналогичные приведенным при решении задачи, получим формулу

(1.7.3)

Эта формула называется формулой Байеса. По формуле (1.7.3) можно вычислить вероятности событий Вi, когда событие А произошло, т. е. переоценить вероятности.

 

 

П. 1.8. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕНИЮ ЧАСТОТЫ ПОЯВЛЕНИЯ СОБЫТИЯ В НЕЗАВИСИМЫХ ИСПЫТАНИЯХ.

ФОРМУЛА БЕРНУЛЛИ

Задача 1. Допустим, что на опытной делянке посеяно 15 семян. Примем, что всхожесть всех семян одинакова и равна 80%. Возможны следующие элементарные события:

А0 = {число семян, давших росток, равно 0};

А1 = {число взошедших семян равно 1};

А2 = {число взошедших семян равно 2};

и т. д. и, наконец,

A15 = {все семена дадут всходы}.

Как найти вероятности этих событий, в частности, вычислить вероятность того, что из 15 посеянных семян взойдет ровно 12, безразлично в какой последовательности?

Рассмотрим серию из n независимых испытаний, в каждом из которых некоторое событие А имеет одну и ту же вероятность Р(А) = р, не зависящую от номера испытания.

Такая серия испытаний называется схемой Бернулли.

Решим следующую задачу. В условиях схемы Бернулли определим вероятность Pk,n события, состоящего в том, что при п повторениях испытания событие А, которое имеет одну и ту же вероятность появления в каждом испытании, произойдет ровно k раз безразлично в какой последовательности. Элементарными исходами испытаний являются:

событие = {появление события А в i-м испытании} (i = l, 2, 3, ..., n), P(Ai) = p;

событие = {непоявление события А в i-м испытании} (i=1, 2, 3,..., п), P( )=1 – p = g.

Предположим, что событие А имело место в k первых испытаниях и не произошло в п–k последующих, т. е. в соответствии с определением произведения событий, произошло событие A1A2A3...Ak ...An. Так как испытания независимы, то, применив теорему умножения вероятностей, получим

.

Число способов наступления сложного события, состоящего в появлении события А именно k раз и непоявлении n – k раз равно числу всевозможных множеств, которые можно образовать из п элементов по k элементов, и отличающихся только составом. Число таких множеств

равно [см. формулу (1.2.3)].

Итак, вероятность наступления события А ровно k раз в серии n - испытаний равно

(1.8.1)

Это формула Бернулли. Здесь п – число повторений независимых испытаний; k – число испытаний, в которых событие А произошло (число успехов); р – вероятность появления события А в одном испытании; g - вероятность непоявления события А в одном испытании (g = 1–p); Pk,n – вероятность сложного события, состоящего в том, что при п испытаниях событие А наступило ровно k раз.

Вернемся к сформулированной выше задаче.

1. Число посеянных семян равно числу независимых испытаний, т. е. n = 15,число «успехов» k= 12, p = 0,8, g = 1 – 0,8 = 0,2. Тогда

Событие «12 из 15» имеет небольшую вероятность. Если наблюдать такие серии повторений испытаний, то 12 успехов из 15 испытаний будут иметь место в среднем в 25 сериях из 100.