Синтез і-РНК та його етапи.Кодони іРНК

Утворення молекул РНК на матриці ДНК називається транскрипцією (від лат. transcriptio переписування). Цей процес відбувається, в основному, під час інтерфази. На генах матриці ДНК утворюються всі три типи РНК - інформаційна, транспортна і рибосомальна. Основні етапи транскрипції: 1. Ініціація. За сигналом з цитоплазми певна ділянка подвійної спіралі ДНК розкручується і розділяється на два ланцюги. Це відбувається за допомогою ферменту гелікази, що зв'язується з ДНК . Ферменти РНК-полімерази забезпечують утворення РНК, що зростають у довжину по мірі просування ферменту уздовж нитки ДНК. РНК-полімераза починає синтезувати новий ланцюг біля спеціального старт-сигналу ДНК, що називається промотором, і закінчує його біля стоп-сигналу (сигнал термінації), після чого полімераза та синтезований готовий ланцюг РНК відокремлюються один від одного. Ділянка ДНК між промотором і термінатором, яка транскрибується, називається одиницею транскрипції. Молекула РНК, яка при цьому утворюється, називається первинним транскриптом або про-іРНК. Один з двох ланцюгів ДНК, на якому йде транскрипція, називається кодуючим ланцюгом. Другий ланцюг ДНК називається ланцюгом, що не кодує. Для різних білків кодувати можуть як один, так і другий ланцюги ДНК. 2. Елонгація - процес нарощування полінуклеотидного ланцюга. Відповідні рибонуклеотиди приєднуються до матричного ланцюга, згодом об'єднуються один з одним залишком фосфорної кислоти, створюючи ланцюг РНК. Процес каталізується РНК-полімеразою і вимагає присутності іонів Мn2+. Утворення іРНК відбувається на основі принципу комплементарності ланцюгів ДНК і РНК та антипаралельно відносно матричного ланцюга ДНК. Таким чином, сформований ланцюг РНК містить азотисті основи, комплементарні основам ланцюга ДНК, уздовж якого вони утворилися. Різні типи РНК в еукаріотів: інформаційна РНК (іРНК), рибосомальна РНК (рРНК). і транспортна РНК (тРНК) транскрибуються на різних ділянках (генах) молекул ДНК. 3. Термінація. РНК-полімераза рухається вздовж ланцюга ДНК і поступово переписує інформацію на РНК. Цей процес завершується за досянення ферментом специфічної нуклеотидної послідовності, що сигналізує про завершення транскрипції (термінатори транскрипції - АТТ, АЦТ і АТЦ). Ділянка молекули ДНК, що містить промотор, послідовність, яка транскрибується, та термінатор, називають транскриптоном . Ланцюг про-іРНК відокремлюється від матричного ланцюга ДНК, зазнає процесингу і переноситься в цитоплазму крізь пори в ядерній оболонці. Вільна від іРНК ділянка молекули ДНК знову зв'язується водневими зв'язками з комплементарною ділянкою другого ланцюга. ДНК скручується в спіраль і набу- ває початкової форми. Процесинг. Молекулярні механізми, пов'язані з "дозріванням" різних типів РНК, називаються процесингом. Вони здійснюються в ядрі перед виходом РНК із ядра в цитоплазму. З'ясувалося, що комплементарною ДНК є тільки молекула-попередниця інформаційної РНК (проCіРНК). Молекули про-іРНК набагато більші, ніж зрілі іРНК. Послідовність азотистих основ у молекулі про-іРНК, що утворилася, точно відтворює порядок чергування основ у ДНК. Під час "дозрівання" інформаційної РНК у бактерій відбувається тільки відщеплення кінців молекул, а в еукаріотів і деяких вірусів цей процес набагато складніший. Молекула про-іРНК містить у собі ряд інертних ділянок (інтронів), що не мають генів. У процесі "дозрівання" ІРНК спеціальні ферменти вирізають інтрони і зшивають активні ділянки, що залишилися (екзони) Цей процес називається сплайсингом. Сплайсинг -дуже точний процес. Його порушення змінює рамку зчитування при трансляції, що призводить до синтезу іншого пептиду. Точність вирізання інтронів забезпечується розпізнаванням ферментів певних сигнальних послідовностей нуклеотидів у молекулі про-іРНК. У процесингу бере участь цілий ряд ферментів. Наприклад, за допомогою ферментів-рестриктаз вирізаються інтронні ділянки, а екзонні ділянки, що залишаються, зшиваються за допомогою ферментів лігаз.. Значення процесингу полягає в тому, що еукаріотична клітина може додатково контролювати про- цеси утворення білків, регулювати свій метаболізм, структуру і функції..

35 і 36.Генетичний код. Вчені,які внесли вклад у розшифрування генетичного коду.
Унікальність кожної клітини полягає в унікальності її білків. Клітини, що виконують різні функції, здатні синтезувати свої власні білки, використовуючи інформацію, що записана в молекулі ДНК. Ця інформація існує у вигляді особливої послідовності азотистих основ у ДНК і називається генетичним кодом. М. Гамов ще в 1954 р. припустив, що кодування інформації в ДНК може здійснюватися сполученням декількох нуклеотидів. Під час досліджень у 1960-х роках Ніренбергу вдалося розшифрувати генетичний код - ідентифікувати комбінації нуклеотидів A, T, G і C, які визначають синтез різних амінокислот. У 1968 році Ніренберг, разом зі своїми колегами Робертом Холлі і Гобіндом Кораною отримав Нобелівську премію за розшифровку генетичного коду і встановлення механізму білкового синтезу. Дослідження вчених відкрило принципово нові можливості в області вивчення спадкових захворювань та пошуку методів їх лікування.

 

Порядок азотистих основ у іРНК, що побудована відповідно до матриці ДНК, визначає порядок зв'язування амінокислот у синтезованому поліпептиді. Встановлено, що кожна амінокислота кодується послідовністю трьох азотистих основ (триплетом, або кодоном). Одне з визначних досягнень біології XX століття розшифрування триплетного генетичного коду. Генетичний код є послідовністю триплетів у молекулі ДНК, що контролює порядок розташування амінокислот у молекулі білка. Послідовність нуклеотидів у молекулі ДНК кодує певну послідовність нуклеотидів в іРНК. Кожний триплет нуклеотидів кодує одну конкретну амінокислоту. Внаслідок трансляції, на основі генетичного коду на рибосомах синтезується необхідний білок. Чотири азотистих основи в комбінаціях по 3, тобто 43 , можуть утворити 64 різних кодони. У молекулі ДНК кожна основа входить до складу лише одного кодону. Тому код ДНК не перекривається. Кодони розташовуються один за одним безперервно. Оскільки можливих варіантів кодонів 64, амінокислот 20, то певні амінокислоти можуть кодуватися різними триплетами (кодонами-синонімами). Внаслідок цього генетичний код називають виродженим або надмірним. Дублюючі триплети відрізняються лише за третім нуклеотидом. Є декілька амінокислот, які кодуються 3-4 різними кодонами (наприклад, амінокислота аланін кодується трипле- тами ЦГА, ЦГГ, ЦГТ, ГЦГ). Поряд з ними є амінокислоти, які кодуються двома триплетами, і тільки дві амінокислоти - одним. Однак кожний триплет кодує тільки одну певну амінокислоту, що свідчить про його специфічність. Крім того, деякі триплети (АТТ, АЦТ, АТЦ) не кодують амінокислоти, а є своєрідними "точками" термінації процесу зчитування інформації. Якщо процес синтезу доходить до такої "точки" в молекулі ДНК, синтез даної РНК припиняється. Встановлено кодони для всіх 20 амінокислот. Послідовність триплетів у ДНК визначає порядок розташування амінокислот у молекулі білка, тобто має місце колінеарність. Це означає, що положення кожної амінокислоти в поліпептидному ланцюгу залежить від положення триплету в ДНК. Численними дослідженнями встановлена універсальність генетичного коду. Він однаковий для всіх живих організмів, від бактерій до рослин і ссавців. Тобто у всіх живих організмів той самий триплет кодує ту ж амінокислоту. Це один з найбільш переконливих доказів спільності походження живої природи. Таким чином, генетичний код ДНК має такі фун- даментальні характеристики: 1) триплетність (три сусідні азотисті основи називаються кодоном і ко- дують одну амінокислоту); 2) специфічність (кож- ний окремий триплет кодує тільки одну певну амі- нокислоту); 3) неперекривність (жодна азотиста основа одного кодону ніколи не входить до складу іншого кодону); 4) відсутність розділових знаків (ге- нетичний код не має "пунктуаційних позначок" між кодуючими триплетами у структурних генах); 5) уні- версальність (даний код он у ДНК або іРНК визна- чає ту саму амінокислоту в білкових системах всіх організмів від бактерій до людини); 6) надмірність (одна амінокислота часто має більш ніж один кодо- вий триплет); 7) колінеарність (ДНК є лінійним полінуклеотидним ланцюгом, а білок лінійним поліпептидним. Послідовність амінокислот у білку відпові- дає послідовності триплетів у його гені. Тому ген і поліпептид, який він кодує, називають колінеарними); 8) відповідність гени -поліпептиди (клітина може мати стільки поліпептидів, скільки має генів).