Механизмы поддержанияравновесия тела

Равновесие тела - состояние устойчивого положения тела в пространстве.

Поддержание равновесия осуществляется сложной системой периферических и центральных механизмов. Главную роль среди них играет рефлекс натяжения, с помощью которого свободно соединенные кости и суставы тела за счёт деятельности скелетной мускулатуры образуют жёсткую опору, способную выдерживать вес (массу) тела. При стоянии общий центр тяжести (ОЦТ) проецируется в центральном участке площади опоры, что обеспечивает статическое равновесие. Изменение вертикального положения тела при движении головы, туловища, конечностей вызывает смещение ОЦТ. Динамическое равновесие в этих условиях поддерживается за счёт рефлекторного сокращения постуральных мышц - мышц поддержания позы. Постуральные рефлексы участвуют в регуляции сохранения равновесия при ходьбе, беге и других движениях, когда ОЦТ переносится с одной опоры на другую (с одной ноги на другую). За счёт постуральных рефлексов осуществляются так называемые защитные движения, позволяющие удерживать равновесие, когда на тело действуют горизонтальные или вращательные силы.

В основе регуляции равновесия лежит сложное взаимодействие системы проприоцепторов, вестибулярного анализатора, органа зрения и мозжечка. Координация механизмов, обеспечивающих равновесие тела, происходит на разных уровнях нервной системы - в спинном мозге, стволе мозга, мозжечке, коре больших полушарий, куда поступает информация от зрительного анализатора, проприоцепторов и вестибулярного анализатора.

Для исследования равновесия применяют различные методы, в том числе метод стабилографии - регистрацию перемещений проекции ОЦТ по площади опоры.

Причины нарушения равновесия. Способность поддерживать равновесие тела нарушается при поражениях вестибулярного аппарата, мозжечка, спинного мозга и др.

 

Физиология мозжечка. Роль мозжечка в регуляции движений. Афферентные входы и нисходящие пути.

Мозжечок

Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Особенности морфофункциональной организации и связи моз­жечка. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1) кора мозжечка построена достаточно однотипно, имеет сте­реотипные связи, что создает условия для быстрой обработки ин­формации;

2) основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;

3) на клетки Пуркинье проецируются практически все видысенсорных раздражений: проприоцептивные, кожные, зрительные,слуховые, вестибулярные и др.;

4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

Мозжечок анатомически и функционально делится на старую, древнюю и новую части.

К старой части мозжечка (archicerebellum) — вестибулярный мозжечок — относится клочково-флоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия.

Древняя часть мозжечка (paleocerebellum) — спинальный моз­жечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов.

Новый мозжечок (neocerebellum) включает в себя кору полуша­рий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

Кора мозжечка имеет специфическое, нигде в ЦНС не повто­ряющееся, строение. Верхний (I) слой коры мозжечка — молеку­лярный слой, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обес­печивают взаимодействие клеток Пуркинье.

Средний (II) слой коры образован клетками Пуркинье, вы­строенными в один ряд и имеющими самую мощную в ЦНС дендритную систему. На дендритном поле одной клетки Пуркинье может быть до 60 000 синапсов. Следовательно, эти клетки вы­полняют задачу сбора, обработки и передачи информации. Аксоны клеток Пуркинье являются единственным путем, с помощью ко­торого кора мозжечка передает информацию в его ядра и ядра структуры большого мозга.

Под II слоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клетками Пур­кинье. Здесь же лежат клетки Гольджи.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.

Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже — 1—3 импульса в секунду.

Стимуляция верхнего слоя коры мозжечка приводит к длитель­ному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сигналах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы выглядят в форме позитивного колебания (торможение активности коры, ги­перполяризация клеток Пуркинье), которое наступает через 15— 20 мс и длится 20—30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).

В кору мозжечка от кожных рецепторов, мышц, суставных обо­лочек, надкостницы сигналы поступают по так называемым спинно-мозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.

Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и голубоватым местом среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.

Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя.

Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую актив­ность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровид­ного и зубчатого ядра.

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.

Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него — с моторной зоной коры большого мозга.

Мозжечковый контроль двигательной активности. Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разги­банию и наоборот.

Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. Например, делая шаг при ходьбе, человек заносит вперед ногу, одновременно центр тяжести туловища пере­носится вперед при участии мышц спины. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

1) астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;

2) астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет сто­яние, сидение и т. д.;

3) дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;

4) тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

5) дисметрия (dismetria — нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

6) атаксия (ataksia, от греч. а — отрицание, taksia — порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в опре­деленной последовательности. Проявлениями атаксии являются так­ же адиадохокинез, асинергия, пьяная-шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз—вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Врожденных двигательных актов у человека не так уж много (например, сосание), большинство же движений он выу­чивает в течение жизни и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигают цели.

Данные о том, что повреждение мозжечка ведет к расстройствам движений, которые были приобретены человеком в результате обучения, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а следовательно, мозжечок при­нимает участие в организации процессов высшей нервной дея­тельности;

7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (сканди­рованная речь).

При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Регуляция мышечного тонуса с помощью моз­жечка происходит следующим образом: проприоцептивные сигналы о тонусе мышц поступают в область червя и клочково-узелковую долю, отсюда — в ядро шатра, далее — к ядру преддверия и РФ продолговатого и среднего мозга и, наконец, по ретикулярно- и вестибулоспинальным путям к нейронам передних рогов спинного мозга, иннервирующих мышцы, от которых поступили сигналы. Следовательно, регуляция мышечного тонуса реализуется по прин­ципу обратной связи.

Следует отметить, что характер влияния на тонус мышц опре­деляется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышц-разгибателей снижа­ется, при низкой (2—10 имп/с) — увеличивается.

Промежуточная область коры мозжечка получает информацию по спинальным трактам от двигательной области коры большого мозга (прецентральной извилины), по коллатералям пирамидного пути, идущего в спинной мозг. Коллатерали заходят в мост, а оттуда — в кору мозжечка. Следовательно, за счет коллатералей мозжечок получает информацию о готовящемся произвольном дви­жении, и возможность участвовать в обеспечении тонуса мышц, необходимого для реализации этого движения.

Латеральная кора мозжечка получает информацию из двигатель­ной области коры большого мозга. В свою очередь латеральная кора посылает информацию в зубчатое ядро мозжечка, отсюда по мозжечково-кортикальному пути в сенсомоторную область коры боль­шого мозга (постцентральная извилина), а через мозжечково-рубральный путь к красному ядру и от него по руброспинальному пути к передним рогам спинного мозга. Параллельно сигналы по пира­мидному пути идут к тем же передним рогам спинного мозга.

Таким образом, мозжечок, получив информацию о готовящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.

Изменение тонуса мышц после повреждения мозжечка обуслов­лено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бескон­трольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей.

При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов сухожилий, мышц, надкостницы, оболочек суставов), но в этом случае снимается тормозное влияние на мотонейроны спинного мозга ретикулярной формации продолговатого мозга.

В норме мозжечок активирует пирамидные нейроны коры боль­шого мозга, которые тормозят активность мотонейронов спинного мозга. Чем больше мозжечок активирует пирамидные нейроны коры, тем более выражено торможение мотонейронов спинного мозга. При повреждении мозжечка это торможение исчезает, так как активация пирамидных клеток прекращается.

Таким образом, в случае повреждения мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолго­ватого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а сле­довательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от про­долговатого мозга при одновременном уменьшении тормозных вли­яний от коры большого мозга (после повреждения структур моз­жечка), мотонейроны спинного мозга активируются и вызывают гипертонус мышц.

Взаимодействие мозжечка и коры большого мозга. Это взаи­модействие организовано соматотопически. Функционально мозже­чок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры большого мозга.

Роль взаимодействия лобной доли коры большого мозга с моз­жечком хорошо проявляется при частичных повреждениях мозжечка. Одномоментное удаление мозжечка приводит к гибели человека, в то же время, если удаляется часть мозжечка, это вмешательство, как правило, не смертельно. После операции частичного удаления мозжечка возникают симптомы его повреждения (тремор, атаксия, астения и т. д.), которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызыва­емые повреждением мозжечка. Механизм данной компенсации ре­ализуется через лобно-мостомозжечковый тракт.

Мозжечок за счет своего влияния на сенсомоторную область коры может изменять уровень тактильной, температурной, зритель­ной чувствительности. Оказалось, что повреждение мозжечка сни­жает уровень восприятия критической частоты мельканий света (наименьшая частота мельканий, при которой световые стимулы воспринимаются не как отдельные вспышки, а как непрерывный свет).

Удаление мозжечка приводит к ослаблению силы процессов воз­буждения и торможения, нарушению баланса между ними, развитию инертности. Выработка двигательных условных рефлексов после уда­ления мозжечка затрудняется, особенно в случаях формирования локальной, изолированной двигательной реакции. Точно так же замедляется выработка пищевых условных рефлексов, увеличивается скрытый (латентный) период их вызова.

Влияние мозжечка на вегетативные функции. Мозжечок оказывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем орга­низма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.

Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное дав­ление снижается, а исходное низкое — повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной — повышение тонуса дыхательных мышц.

Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.

Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухуд­шается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерож­дению.

При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мы­шечные сокращения, сосудистый тонус, обмен веществ и т. д. реа­гируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сен­сорной, интегративной и т. д. Однако эти функции мозжечок реа­лизует через другие структуры центральной нервной системы. Моз­жечок выполняет функцию оптимизации отношений между различ­ными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой — удержанием этой ак­тивности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.

Афферентный вход к нейронному аппарату коры осуществляется по трем системам волокон. Это, во-первых, лазающие, или лиано-видные, волокна, идущие из нижних олив продолговатого мозга. Нижняя олива получает афференты от нескольких восходящих трактов спинного мозга и из центров головного мозга. Лазающие волокна широко ветвятся и подобно лианам оплетают дендриты клеток Пуркинье, формируя на них синапсы. Вторая система афферентных волокон - это мшистые, или моховидные, волокна, идущие от ядер моста и оканчивающиеся на клетках-зернах. Мшистые волокна многократно ветвятся и образуют синапсы на множестве клеток коры мозжечка. И наконец, третья система афферентных волокон - это также широко ветвящиеся адренэргические волокна, поступающие в кору мозжечка из голубого пятна в среднем мозгу. Голубое пятно представляет собой скопление из нескольких сотен нейронов, аксоны которых способны диффузно выбрасывать норадреналин в межклеточное пространство. Вероятно, эти нейроны выполняют нейромодуляторную функцию и могут изменять возбудимость нейронов, локализованных в коре мозжечка.

Нейрофизиологические исследования Дж. Экклса показали, что корзинчатые и звездчатые клетки, которые заканчиваются синапсами на клетках Пуркинье, вызывают в них тормозные постсинаптические потенциалы (ТПСП) и подавление импульсной активности. Клетки Гольджи тормозят клетки-зерна по принципу обратной связи .

Таким образом, большинство связей, опосредованных интернейронами коры мозжечка, являются тормозными. Исключение составляют только клетки-зерна, которые возбуждаются от мшистых волокон и сами через Т-образно ветвящиеся аксоны активируют все остальные интернейроны коры мозжечка. Однако конечный эффект этой активации опять-таки сводится к торможению.

Клетки Пуркинье, которые представляют собой выход функциональной системы, могут возбуждаться прямо через лиановидные волокна и опосредованно через моховидные волокна и клетки-зерна. Возникающие под действием этого возбуждения разряды клеток Пуркинье, согласно электрофизиологическим данным, вызывают в конечном итоге торможение нейронов ядер мозжечка. Эти факты свидетельствуют о том, что деятельность всей нейрональной системы коры мозжечка сводится к торможению ядер, над которыми кора надстроена. Очевидно, механизм этого торможения можно представить следующим образом.

В покое клетки Пуркинье обладают фоновой электрической активностью, которая вызывает тоническое торможение нейронов в ядрах мозжечка. Возбуждение клеток Пуркинье через систему ли-ановидных или мшистых волокон приводит к увеличению частоты импульсных разрядов этих нейронов и, как следствие, к усилению торможения ядер мозжечка. Напротив, торможение клеток Пуркинье, вызванное звездчатыми или корзинчатыми клетками, сопровождается растормаживанием нейронов в ядрах мозжечка. Сами же ядра мозжечка, обладающие постоянной тонической активностью, через нисходящие пути регулируют уровень возбудимости центров спинного мозга и мышечный тонус.

Согласно гипотезе, высказанной Дж. Экклсом, большое количество тормозных нейронов в коре мозжечка предотвращает длительную циркуляцию возбуждения по нейронным цепям. Любой возбуждающий импульс, приходя в кору мозжечка, превращается в торможение за время порядка 100 мс. Так происходит как бы автоматическое стирание предшествующей информации, которое позволяет коре мозжечка участвовать в регуляции быстрых движений.

В белом веществе мозжечка сконцентрированы три пары ядер. В белом веществе червя близко к срединной плоскости находится ядро шатра, или фастигиальное ядро. Нейроны этого ядра посылают свои отростки к вестибулярному ядру Дейтерса и к ретикулярной формации продолговатого мозга и варолиева моста, где берет свое начало ретикулоспинальный тракт спинного мозга. Латеральнее фастигиального ядра находится вставочное, илипромежуточное, ядро, которое у человека разделяется на шаровидное и пробковидное ядра. От вставочного ядра аксоны идут в средний мозг к красному ядру. Менее развитый афферентный путь от вставочного ядра идет в промежуточный мозг к вентролатеральному ядру зрительного бугра - таламуса - и оттуда к двигательной коре. Латеральнее всех ядер лежит наиболее крупное зубчатое ядро мозжечка, от которого мощные пучки волокон направляются к вентролатеральному ядру таламуса, и далее аксоны нейронов второго порядка проецируются в моторные зоны коры.

К нейронам мозжечковых ядер подходят аксоны клеток Пуркинье. Установлено, что клетки Пуркинье червя устанавливают прямые связи с ядром Дейтерса. Это позволяет иногда относить ядро Дейтерса к внутримозжечковым ядрам по функциональному принципу.

Существует определенная топография связей коры мозжечка с его ядрами. Согласно классификации Бродала, кору мозжечка млекопитающих можно разделить на три продольные зоны: медиальную червячную зону, от которой аксоны клеток Пуркинье проецируются на ядро шатра, промежуточную зону коры, связанную со вставочным ядром, и латеральную зону коры полушарий, дающую проекции к зубчатому ядру. Эта классификация, в основу которой положены эфферентные связи мозжечка, свидетельствует о том, что латеральные отделы мозжечка через зубчатое ядро связаны с более высокими уровнями головного мозга.

В целом мозжечок имеет обширные эфферентные связи со всеми двигательными системами стволовой части мозга: кортикоспинальной, руброспинальной, ретикулоспинальной и вестибулоспинальной. Не менее разнообразными являются и афферентные входы мозжечка.

Афферентная информация в мозжечок от спинного мозга приходит по спинно-мозжечковым трактам (дорсальному и вентральному), ростральному спинно-мозжечковому и кунеоцеребеллярным трактам, по спинооливомозжечковым путям. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются кортикоретикуломозжечковый и це-ребромостомозжечковый тракты.