Сравнение прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970—1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Сравнение прокариотической и эукариотической клеток

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот — обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеток организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот — например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5—5 мкм, размеры эукариотических — в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток — это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

Сравнительная характеристика клеток эукариот и прокариот
Признак Прокариоты Эукариоты
Размеры клеток Средний диаметр 0,5—10 мкм Средний диаметр 10—100 мкм
Организация генетического материала
Форма, количество и расположение молекулДНК Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме Обычно есть несколько линейных молекул ДНК — хромосом, локализованных вядре
Компактизация ДНК У бактерий ДНК компактизируется без участия гистонов. Уархей ДНК ассоциирована с белками гистонами Имеется хроматин: ДНК компактизируется в комплексе с белками гистонами.
Организация генома У бактерий экономный геном: отсутствуют интроны и большие некодирующие участки. Гены объединены вопероны. У архей имеются интронные участки особой структуры. Большей частью геном не экономный: имеется экзон-интронная организация генов, большие участки некодирующей ДНК Гены не объединены в опероны.
Деление
Тип деления Простое бинарное деление Мейоз или митоз
Образование веретена деления Веретено деления не образуется Веретено деления образуется
Органеллы
Тип рибосом 70S рибосомы 80S рибосомы
Наличие мембранных органелл Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки Имеется большое количество одномембранных и двумембранных органелл
Тип жгутика Жгутик простой, не содержит микротрубочки, не окружен мембраной, диаметр около 20 нм Жгутики состоят из микротрубочек, расположенных по принципу «9+2», окружены плазматической мембраной, диаметр около 200 нм

тных и растений клетки объединены в ткани и органы, в составе которых они взаимодействуют между собой, в частности, благодаря прямым физическим контактам. В растительных тканях отдельные клетки соединяются между собой с помощью плазмодесм, а животные образуют различные типы клеточных контактов.

Плазмодесмы растений — это тонкие цитоплазматические каналы, которые проходят через клеточные стенки соседних клеток, соединяя их между собой. Полость плазмодесм устлана плазмалеммой. Совокупность всех клеток, объединенных плазмодесмами, называется симпластом, между ними возможен регулируемый транспорт веществ.

Межклеточные контакты позвоночных животных на основе строения и функций разделяют на три основных типа: якорные (англ. anchoring junctions), включающиеадгезионные контакты и десмосомы, плотные или изоляционные (англ. tight junction) и щелевые или коммуникационные (англ. gap junction). Кроме того, некоторые особые виды соединений между клетками, такие как химические синапсы нервной системы и иммунологические синапсы (между T-лимфоцитами иантигенпредставляющими клетками), объединяют по функциональному признаку в отдельную группу: контакты, которые передают сигналы, (англ. signal-relaying junction). Однако в межклеточном сигнализировании могут участвовать и якорные, щелевые и плотные контакты.

 

7. Назовите основные компоненты структуры клеток и их отличительные черты.

Теоретической базой цитологии является клеточная теория. Клеточная теория была сформулирована в 1838 году Т. Шванном, хотя первые два положения клеточной теории принадлежат М. Шлейдену, который занимался изучением клеток растений. Т. Шванн - известный специалист по строению клеток животных в 1838 году, опираясь на данные работ М. Шлейдена и результаты своих собственных исследований, сделал следующие выводы:

Клетка это наименьшая структурная единица живых организмов.

Клетки образуются в результате деятельности живых организмов.

Клетки животных и растений имеют больше сходств, чем различий.

Клетки многоклеточных организмов связаны между собой структурно и функционально.

Дальнейшее изучение строения и жизнедеятельности позволило узнать о ней много нового. Этому способствовало совершенство микроскопической техники, методов исследования и приход в цитологию многих талантливых исследователей. Было детально изучено строение ядра, проведен цитологический анализ таких важнейших биологических процессов как митоз, мейоз, оплодотворение. Стало известной микроструктура самой клетки. Были открыты и описаны органоиды клетки. Программа цитологических исследований 20 века поставила задачу выяснить и точнее разграничить свойства клетки. Отсюда особое внимание стало уделяться изучению химического состава клетки и механизма поглощения клеткой веществ окружающей средой. Все эти исследования позволили умножить и расширить положения клеточной теории, основные постулаты которой в настоящее время выглядят следующим образом:

Клетка - основная и структурная единица всех живых организмов.

Клетки образуются только из клеток в результате деления.

Клетки всех организмов сходны по своему строению, химическому составу, основным физиологическим функциям.

Клетки многоклеточных организмов образуют единый функциональный комплекс.

Клетки всех живых существ на земле можно поделить на два принципиально разных типа: ядерные (эукариотические) и безъядерные (прокариотические). Прокариотические клетки - самые древние на нашей планете, это клетки бактерий и синезеленых водорослей. Для них характерны следующие черты: Отсутствие ядра.

Наличие ДНК кольцевого вида.

Многократное повторение одинаковых генов в ДНК.

Отсутствие самоделящихся органелл клетки: центриолей, митохондрий, пластид. Деление клетки путем амитоза (прямого деления). Из эукариотических клеток образованы организмы растений, грибов и животных. Они появились позднее прокариот. Для них характерны такие признаки как:

Наличие ядра, где всегда находятся молекулы ДНК. Некоторые клетки вторично утрачивают ядро (эритроциты млекопитающих и тромбоциты).

ДНК всегда в виде одной или нескольких нитей, незамкнутых на концах. Гены в каждой молекуле ДНК, как правило, не повторяются.

В клетках всегда имеются самоделящиеся органеллы, обладающие собственными молекулами ДНК: центриоли, митохондрии, пластиды. Последние встречаются только в растительных клетках.

Деление клетки путем митоза (непрямого деления), в результате которого все гены равномерно распределяются между новыми клетками. Эукариотические клетки в десятки и сотни раз крупнее прокариотических. Рассмотрим более подробно строение эукариотической клетки. Клетка имеет мембрану, цитоплазму и ядро. Мембрана - органелла клетки, имеющая четырехслойное строение. Наружный и внутренний слои белковые. Между ними лежат два слоя из жироподобных веществ - липоидов. Один из концов молекулы липоида имеет хорошо выраженные гидрофобные свойства. В мембране все липоиды расположены так, что своими гидрофобными концами каждый слой сориентирован в противоположную сторону от другого. В разных местах клеточной мембраны встроены особые крупные молекулы белков, которые занимают всю ее толщину. Мембраны многих клеток снаружи покрываются дополнительными защитными оболочками, состоящими либо из углеводов (например, из целлюлозы в растительных клетках), либо из сложных веществ - глюкопротеидов (пелликула инфузорий и жгутиконосцев). Здоровье клетки, длительность ее жизни во многом зависят от состояния мембраны. Полная проницаемость для воды. Мембрана всегда пропускает воду внутрь клетки или наружу, в зависимости от того, где концентрация воды больше. Такое движение вещества из области высокой его концентрации в область более низкой называется диффузией. Диффузия вещества не требует затрат энергии. Избирательная проводимость растворенных веществ:

Отрицательно заряженные частицы быстрее и легче проникают через мембрану.

Вещества растворимые в жирах легче проникают через мембрану, чем вещества растворимые в воде.

Мелкие молекулы легче проникают через мембрану, чем крупные. Активный транспорт веществ. Некоторые вещества способны проникать через мембрану в направлении обратном их диффузии, то есть из места низкой в место с более высокой концентрацией. Путем активного транспорта из клетки постоянно выводится избыток ионов натрия, водорода и хлора. А фосфаты, глюкоза, аминокислоты, наоборот активно проникают в цитоплазму. Активный транспорт всегда сопряжен с затратой энергии. Мембрана регулярно восстанавливается в результате работы специальных органелл, синтезирующих мембранные вакуоли. Многие мембраны, не покрытые плотными оболочками, способны образовывать временные выросты, называемые ложноножками (псевдоподиями).

Функции мембран:

Фагоцитоз - захват ложноножками твердых частичек пищи. В результате образуется пищеварительная вакуоль, плавающая в цитоплазме.

Пиноцитоз - поглощение растворенных веществ.

Защитная. Мембрана защищает клетку от проникновения в нее чужеродных, опасных веществ. Дыхательная. Через мембрану в клетку поступает кислород, а выделяется углекислый газ. Гомеостатическая. Гомеостаз - это способность поддерживать относительно постоянным свой состав. Благодаря своим свойствам (избирательному поглощению веществ и активному транспорту) мембрана обеспечивает клетке постоянство своего состава. Интегративная. Клетки контактируют между собой при помощи мембран. Через мембрану одна клетка может передавать различную информацию другой клетке. Эта информация может передаваться как при помощи электрических импульсов, так и при помощи химических веществ (гормонов, медиаторов).

Цитоплазма - клеточный сок, клеточная жидкость. Содержит воду, растворенные в ней неорганические и органические вещества, а также различные обособленные структуры, называемые органеллами: Рибосомы - органеллы клетки, состоящие из двух частиц крупной и мелкой. Каждая частица образована белками и рибосомальной РНК. Рибосомы осуществляют синтез белка. Синтезируются в ядре.

Эндоплазматическая сеть (ЭПС) - мембранная органелла клетки, представляющая многочисленные каналы и полости из мембран, по структуре сходной с мембраной клетки. По строению и функциям делится на два типа: шероховатая ЭПС - содержит на поверхности рибосомы и является местом синтеза белков; гладкая ЭПС - не содержит рибосом, является местом синтеза углеводов, липоидов и жиров. Снаружи ЭПС контактирует с мембраной клетки, внутри - с мембраной ядра.

Аппарат Гольджи - по расположению является участком эндоплазматической сети. Имеет мембранную структуру. Выглядит как скопление многочисленных мешочков, полостей, вакуолей. Выполняет множество функций: Доводит белки до окончательной рабочей формы, некоторые белки в крупные белковые комплексы, присоединяет к некоторым белкам необходимые ионы металлов.