Устойчивость комплексных соединений. Константа нестойкости

В растворах комплексных соединений существует система динамических равновесий, т. е. комплексные соединения подвержены в значительной степени электролитической диссоциации. Ионы или молекулы, находящиеся во внешней сфере, связаны в комплексном соединении гораздо слабее, чем ионы или молекулы, находящиеся во внутренней сфере. Такая различная прочность связи обусловливает характер диссоциации комплексных соединений.

Диссоциация комплексных соединений протекает по стадиям. На первой стадии комплексное соединение диссоциирует как сильный электролит, т. е. практически полностью. Далее, комплексный ион диссоциирует как слабый электролит по ступеням, т. е. лиганды отделяются от комплексообразователя постепенно. Например, диссоциация комплексной соли [Ag(NH3)2]Cl протекает по следующим стадиям:

Первая стадия: [Ag(NH3)2]Cl [Ag(NH3)2]+ + Cl-

Вторая стадия:1. Ag(NH3)2]+ AgNH3+ + NH3

2. AgNH3+ Ag+ + NH3

Диссоциация комплекса идет лишь в незначительной степени и может быть охарактеризована величиной общей константы ионизации данного комплекса, которая определяется как произведение констант диссоциации по отдельным ступеням. Так, в данном примере

(9.1)

Чем больше величина этой константы, тем сильнее комплекс диссоциирует, тем менее он устойчив. Эта константа называетсяконстантой нестойкости. Обратная величина константы нестойкости называетсяконстантой устойчивости :

(9.2)

Константы нестойкости для различных комплексных ионов различны и могут служить мерой устойчивости комплекса. Наиболее устойчивые в растворах комплексные ионы имеют наименьшие константы нестойкости. Так, среди соединений

  [Ag(NO2)2] - [Ag(NH3)2] + [Ag(S2O3)] - [Ag(CN)2] -
K нест 1,3 · 10-3 5,8 · 10 -8 1,5 · 10 -9 1,4 · 10-20

устойчивость комплекса возрастает при переходе от [Ag(NO2)2] - к [Ag(CN)2] -.

Значения констант нестойкости и устойчивости приводятся в справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями: при сильном различии констант устойчивости реакция пойдет в сторону образования комплекса с большей константой устойчивости или, что равноценно, с меньшей константой нестойкости. Например, для иона [Ag(NH3)2] + Kнест = 5,8 · 10 -8, а для иона [Ag(CN)2] - Kнест = 1,4 · 10 -20, поэтому при действии раствора КСN аммиакат серебра разрушается с образованием иона [Ag(CN)2] - :

[Ag(NH3)2]Cl = 2KCN = K[Ag(CN)2] + 2NH3 = KCl

Зная константы нестойкости различных комплексов, можно теоретически вычислить концентрацию соответствующих простых ионов в растворах комплексных солей.

Пример 1.
Найти концентрацию Ag+ в 0,01 М растворе [Ag(NH3)2]NO3, если Kнест = 5,8 · 10 - 8.

Решение.
Обозначив искомую концентрацию Ag+ через х, из уравнения диссоциации комплекса [Ag(NH3)2]+ находим

[NH3] = 2x;

т. к. степень диссоциации комплекса незначительна. Следовательно, можно записать

От величины Kнест комплексного иона и KS осадка, который образует реактив с одним из продуктов распада комплекса, зависит, будут ли образовываться соответствующие осадки.

Пример 2.
Образуется ли осадок AgCl при прибавлении к 0,01М раствору [Ag(NH3)2]NO3 0,01М раствора KСl?

KS(AgCl) = 1,8 · 10 -10; Kнест[Ag(NH3)+2] = 5,8 10 -8.

Решение.
[ Ag+] = 5,25 ·10 -4 моль/л (см. пример 1), исходя из условия [Cl]- = 0,01 моль/л.

Для того чтобы выпал осадок AgCl, необходимо, чтобы

[ Ag+] · [Cl-]>KS(AgCl)

В данном примере

5,25 · 10 -4 · 10-2 = 5,25 · 10 -6 > 1,8 · 10 -10

Следовательно, осадок AgCl образуется.

При выборе условий наиболее эффективного разделения ионов исходят из соотношения констант устойчивости образуемых ими комплексных соединений.

Например, катионы Ni2+, Co2+, Zn2+ дают устойчивые растворимые аммиакаты, а Al3+, Fe3+, Cr3+ менее склонны к комплексообразованию с аммиаком и осаждаются при действии аммиака в виде гидроксидов. Это позволяет разделить действием аммиака эти две группы катионов.

 

 

30 вопрос

 

ДИСПЕРСНЫЕ СИСТЕМЫ, гетерог. системы из двух или большего числа фаз с сильно развитой пов-стъю раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме к-рой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Дисперсные системы могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз к-рого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, нек-рые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.
Основные типы дисперсных систем. По дисперсности, т. е. размеру частиц дисперсной фазы или отношению общей площади межфазной пов-сти к объему (или массе) дисперсной фазы (уд. поверхности), дисперсные системы условно делят на грубодисперсные и тонко(высоко)дисперсные. Последние, по традиции, наз. коллоидно-дисперсными или просто коллоидными системами. Вгрубодисперсных системах частицы имеют размеры от 1 мкм и выше (уд. пов-сть не более 1 м2/г), в коллоидных - от 1 нм до 1 мкм (уд. пов-сть достигает сотен м2/г). Дисперсность оценивают по усредненному показателю (среднему размеру частиц, уд. пов-сти) или дисперсному составу (см. Дисперсионный анализ). Тонкопористые тела характеризуют пористостью -понятием, аналогичнымдисперсности. В свободнодисперсных системах сцепление между частицами дисперсной фазы отсутствует, каждая частица кинетически независима и при достаточно малых размерах участвует в интенсивном броуновском движении. Для структурированных (связнодисперсных) систем характерно наличие неупорядоченной пространств. сетки (каркаса), образованной частицами дисперсной фазы (см. Структурообразование в дисперсных системах). Особую группу составляют высококонцентрированные дисперсные системы, в к-рых частицы находятся в "стесненных" условиях как, напр., в периодич. коллоидных структурах. Мех. св-ва свободнодисперсных систем определяются гл. обр. св-вами дисперсионной среды, а связнодисперсных систем - также св-вами и числом контактов между частицами дисперсной фазы (см. Реология). По агрегатному состоянию дисперсионной среды и дисперсной фазы выделяют след. осн. виды дисперсных систем: 1) аэродисперсные (газодисперсные) системы с газовой дисперсионной средой: аэрозоли (дымы, пыли, туманы), порошки, волокнистые материалы типа войлока. 2) Системы с жидкой дисперсионной средой; дисперсная фаза м. б. твердой (грубодисперсные суспензии и пасты, высокодисперсные золи и гели), жидкой (грубодисперсные эмульсии, высокодисперсныемикроэмульсии и латексы) или газовой (грубодисперсные газовые эмульсии и пены). 3) Системы с твердой дисперсионной средой: стеклообразные или кристаллич. тела с включениями мелких твердых частиц, капель жидкости или пузырьков газа, напр., рубиновые стекла, минералы типа опала, разнообразные микропористые материалы. Отдельные группы дисперсных систем составляют мн. металлич. сплавы, горные породы, сложные композиционные и др. многофазные системы. Лиофильные и лиофобные дисперсные системы с жидкой дисперсионной средой различаются в зависимости от того, насколько близки или различны по своим св-вамдисперсная фаза и дисперсионная среда (см. Лиофильность и лиофобность). В лиофильных дисперсных системах межмолекулярные взаимод. по обе стороны разделяющей фазы пов-сти различаются незначительно, поэтому уд. своб. поверхностная энергия (дляжидкости - поверхностное натяжение) чрезвычайно мала (обычно сотые доли мДж/м2), межфазная граница (поверхностный слой) м. б. размыта и по толщине нередко соизмерима с размером частиц дисперсной фазы. Лиофильные дисперсные системы термодинамически равновесны, они всегда высокодисперсны, образуются самопроизвольно и при сохранении условий их возникновения могут существовать сколь угодно долго. Типичные лиофильные дисперсные системы - микроэмульсии, нек-рые полимер-полимерные смеси,мицеллярные системы ПАВ, дисперсные системы с жидкокристаллич. дисперсными фазами. К лиофильным дисперсным системам часто относят также набухающие и самопроизвольно диспергирующиеся в водной среде минералы группы монтмориллонита, напр., бентонитовые глины. Следует отметить, что в прошлом "лиофильными коллоидами" наз. р-ры полимеров, т. е. принципиально гомог. системы. Однако в совр. терминологии понятие "коллоид" относится только к микрогетерогенным системам; по отношению к гомогенным (однофазным) системам его не употребляют. В лиофобных дисперсных системах межмолекулярное взаимод. вдисперсионной среде и в дисперсной фазе существенно различно; уд. своб. поверхностная энергия (поверхностное натяжение) велика - от неск. единиц до неск. сотен (и тысяч) мДж/м2; граница фаз выражена достаточно четко. Лиофобные дисперсные системы термодинамически неравновесны; большой избыток своб. поверхностной энергии обусловливает протекание в них процессов перехода в более энергетически выгодное состояние. В изотермич. условиях возможна коагуляция -сближение и объединение частиц, сохраняющих первоначальные форму и размеры, в плотные агрегаты, а также укрупнение первичных частиц вследствие коалесценции -слияния капель или пузырьков газа, собирательной рекристаллизации (в случае кристаллич. дисперсной фазы) или изотермич.перегонки (мол. переноса) в-ва дисперсной фазы от мелких частиц к крупным (в случае дисперсных систем с жидкой дисперсионной средой - последний процесс наз. переконденсацией). Нестабилизованные и, следовательно, неустойчивые лиофобные дисперсные системы непрерывно изменяют свой дисперсный состав в сторону укрупнения частиц вплоть до полного расслоения на макрофазы. Однако стабилизованные лиофобные дисперсные системы могут сохранять дисперсность в течение длит. времени.

 

 

31 вопрос

 

2. Получение коллоидных растворов. Дисперсионные методы: механический, ультразвуковой, пептизации. Конденсационные методы: замены растворителя, окисления, восстановления, гидролиза, по реакции обмена.

Коллоидные растворы

Коллоидное состояние характерно для многих веществ, если их частицы имеют размер от 10ˉ7 до 10ˉ5 см. Суммарная их поверхность огромна, и она обладает поверхностной энергией, за счет которой может адсорбировать частицы из раствора. Образующаяся коллоидная частица называется мицеллой. Она имеет сложное строение и состоит из ядра, адсорбированных ионов, противоионов.

Если растворитель взаимодействует с ядром частицы, то образуются лиофильные коллоиды, если не взаимодействует – то лиофобные коллоиды.