Решение заданий типа 111-120

Теоретический справочник.

Дифференциальным уравнением I-го порядка называется уравнение, связывающее независимую переменную х, искомую функцию и ее производную , т.е. уравнение вида

или .

Общим решением дифференциального уравнения называется такая функция , , определенная и непрерывно дифференцируемая в интервале , которая обращает данное уравнение в тождество, т.е.

.

Частным решением дифференциального уравнения называется решение, получаемое из общего при конкретном значении произвольной постоянной с, которую можно определить из условия , называемое начальным условием.

Чтобы решить дифференциальное уравнение I-го порядка, нужно определить его вид, найти его общее решение, а затем частное решение.

Пример 1. Найти частное решение дифференциального уравнения I порядка

, удовлетворяющее начальному условию .

Решение. Преобразуем исходное уравнение, разделив обе его части на :

или . Затем разделим обе части уравнения на : . Разделив правую часть уравнения (и числитель, и знаменатель) на , получим однородное дифференциальное уравнение I порядка, т.к. оно имеет вид . Сделаем замену переменной: . Тогда исходное уравнение примет вид или или . Пользуясь свойством пропорции, соберем возле дифференциалов соответствующие переменные: и проинтегрируем полученное равенство: . Найдем интеграл, стоящий слева: = =

= = = .

Найдем интеграл, стоящий справа: . Следовательно, , или, возвращаясь к прежним переменным и обозначая , получим . Преобразуем последнее равенство, используя свойство логарифма , и получим общее решение . Подставив в последнее соотношение начальное условие , найдем конкретное значение произвольной постоянной: или . Тогда частное решение примет вид или .

Ответ:

Пример 2. Найти частное решение дифференциального уравнения I порядка
, удовлетворяющее начальному условию .

Решение. Разделим обе части уравнения на :

или .

Данное уравнение является линейным, т.к. имеет вид

и решается заменой , где неизвестные функции;

.

Подставляя выражения для в исходное уравнение, получим

. Сгруппируем слагаемые, содержащие функцию : . В качестве функции выбирают одну из функций, удовлетворяющих уравнению или . Интегрируем последнее соотношение, разделяя переменные: или , , , . Тогда функция определится из уравнения . Подставляя найденную функцию , получим или или . Интегрируя последнее уравнение, найдем функцию : . Итак, общее решение имеет вид или . Подставляя начальные данные , получаем уравнение: откуда . Частное решение имеет вид .