Функции комплексного переменного

Действия с комплексными числами.

10.1.1. Выполнить действия:

а) ; б) .

10.1.2. Решить уравнения:

а) ; б) .

Аналитические функции.

10.2.1. Показать, что функция аналитична.

10.2.2. Известна вещественная часть u(x,y)=m(x2-y2)+mx-ny аналитической функции f(z), (z=x+iy). Найти функцию f(z).

Интегрирование функций комплексного переменного.

10.3.1. Вычислить , где контур С – незамкнутая ломанная, соединяющая точки , и .

10.3.2. Вычислить с помощью интегральной формулы Коши

.

Ряды Тейлора и Лорана.

10.4.1. Разложить функцию в окрестности точки в ряд Тейлора и найти радиус сходимости ряда.

10.4.2. Разложить функцию в окрестности точки в ряд Лорана.

10.4.3. Разложить функцию в ряд Лорана по степеням и найти область сходимости ряда.

Вычеты и их приложения.

10.5.1. Определить тип особых точек функции и найти вычеты в конечных особых точках.

10.5.2. Вычислить с помощью вычетов , где контур C, заданный уравнением , обходится против часовой стрелки.

Операционное исчисление.

Нахождение изображений и восстановление оригиналов.

11.1.1. Найти изображения функций:

а) ; б) .

11.1.2. Восстановить оригиналы по изображениям:

а) ; б) .

Приложения операционного исчисления.

11.2.1. Решить операционным методом дифференциальное уравнение:

а) ;

б) .

 

Теория вероятностей.

Случайные события.

12.1.1. В коробке находятся m+2 синих, n+3 красных и 2n+1 зеленых карандашей. Одновременно вынимают m+3n+2 карандашей. Найти вероятность того, что среди них будет m+1 синих и n+1 красных.

12.1.2. В первой урне находятся m+2 шаров белого и n шаров черного цвета, во второй — m+n белого и m синего, в третьей — n+3 белого и m+1 красного цвета. Из первой и второй урны наудачу извлекают по одному шару и кладут в третью. После этого из третьей вынимают один шар. Найти вероятность того, что он окажется белым.

12.1.3. Вероятность попадания стрелка в мишень при одном выстреле равна . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Случайные величины.

12.2.1. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание MXи дисперсию DX; построить график F(x).

12.2.2. Закон распределения дискретной случайной величины X имеет вид:


 

xi -2 -1 m m+n
pi 0,2 0,1 0,2 p4 p5

 

Найти вероятности p4, p5, и дисперсию DX, если математическое ожидание MX=-0,5+0,5m+0,1n.

12.2.3. Плотность распределения непрерывной случайной величины X имеет вид:

Найти:

а) параметр а; б) функцию распределения ;

в) вероятность попадания случайной величины X в интервал

;

г) математическое ожидание MX и дисперсию DX.

Построить график функций и .

12.2.4. Случайные величины имеют равномерное, пуассоновское и показательное распределения соответственно. Известно, что математические ожидания i=m+n, а дисперсия 1=n2/3. Найти вероятности: а) ; б) ; в) .