Признаки возрастания и убывания функции

Далее теорема выражает важный для практических це­лей признак строгого возрастания и строгого убывания функции и указывает правило для определения интервалов, на которых функция возрастает и убывает (интервалов монотонности функции).

 

Теорема. (достаточный признак возрастания и убывания функции на интервале) Если во всех точках некоторого интервала первая производная , то функция на этом интервале воз­растает. Если же во всех точках некоторого интервала первая производная , то функция на этом интервале убывает.

Правило. Для определения интервалов строгого возрастания и строгого убывания функции следует решить неравенства:

и .

Пример. Найти интервалы монотонности функции

.

Решение. Областью определения данной функции является вся ось . Находим производную . Чтобы найти интервалы возрастания функции, решим неравенство или ; чтобы найти интервалы убывания функции, решим неравенство . Корни квадратного трёхчлена равны 1 и 3, поэтому распределение знаков квадратного трехчлена имеет вид

 

+ – +

 
 


1 3

Следовательно, на интервалах и функция возрастает, а на интервале функция убывает.

Экстремум функции

Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального максимума функции , а – локальным максимумом функции. Если для всех значений из некоторой окрестности точки выполняется неравенство , то называют точкой локального минимума функции , а – локальным минимумом функции. Минимумы и максимумы функции называют ее экстремумами.

Необходимый и достаточный признаки экстремума функции дают следующие две теоремы

 

ТЕОРЕМА 1 (необходимый признак экстремума) Если точка является точкой экстремума, то в этой точке производная равна нулю или не существует.

Эта теорема имеет простую геометрическую интерпретацию.

 

Рис. 4 Рис. 5 Рис. 6

На рис. 4 касательная к графику функции в точке – точка экстремума – параллельна оси , т.е. угловой коэффициент (а это и есть производная) равен нулю.

На рис. 5 касательная в точке экстремума перпендикулярна оси , на рис. 6 касательная в точке с абсциссой не существует. В обоих случаях производная в точке не существует.

Точки, в которых первая производная равна нулю, а также, в которых она не существует, но функция сохраняет непрерывность, называются критическими.

Следует уяснить, что указанный признак экстремума явля­ется только необходимым, но отнюдь не достаточным: производ­ная функции может быть равна нулю или не существовать не только в тех точках, в которых функция достигает экстре­мума. Например, производная функции равна нулю в любой точке, но экстремума у этой функции нет (рис. 7). Поэтому, определив критические точки, в которых функция может достигать экстремума, надо каждую из точек в отдель­ности исследовать на основании достаточных условий существо­вания экстремума.

 

 

0

Рис. 7

 

ТЕОРЕМА 2 (достаточный признак экстремума) Если при переходе через критическую точку производная меняет знак, то критическая точка является точкой экстремума. Это точка максимума, если производная меняет знак с плюса на минус, и точка минимума, если производная меняет знак с минуса на плюс.

Пример. Исследовать на экстремум функцию .

Решение.

1. Область определения .

2. Находим критические точки, для чего найдем производную и приравняем ее к нулю . Отсюда , , . Точек, где не существует, нет.

3. Исследуем критические точки по достаточному признаку экстремума. Это удобно делать в таблице, куда заносятся критические точки и точки разрыва функции (в данном примере точек разрыва нет).

 

- -
  нет экстремума     нет экстремума  

 

Для нахождения знака производной достаточно подставить в нее любое значение из рассматриваемого интервала. Так, исследуя интервал , можно взять, например, точку и подставить это значение в производную: . Исследовав, указанным образом знаки производной в интервалах , замечаем, что производная меняет знак при переходе через точку 0 (с “+” на “-”). Значит, – точка максимума. Значение функции в этой точке .

Точки перегиба

График функции называется выпуклым на интервале , если он расположен ниже касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 а).

График функции называется вогнутым на интервале , если он расположен выше касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 б).

       
 
   
 

 


 

 

 

Рис. 8 а Рис. 8 б

 

ТЕОРЕМА (достаточный признак выпуклости (вогнутости) графика функции) Если на интервале , то график функции является выпуклым на этом интервале; если же , то на интервале график функции – вогнутый.

Точка кривой, отделяющая ее выпуклую дугу от вогнутой, называется точкой перегиба.

Точки кривой, в которых вторая производная или не существует, называются критическими точками второго рода. Точки перегиба следует искать среди критических точек второго рода.

В критической точке второго рода перегиб будет только в том случае, когда при переходе через эту точку меняет знак.

Правило. Для определения точек перегиба кривой надо определить все критические точки второго рода и рассмотреть знаки в каждых двух соседних интервалах, на которые эти точки делят область определения функции. В случае, если знаки в двух соседних интервалах различны, критическая точка второго рода является точкой перегиба. Если же в двух соседних интервалах имеет один и тот же знак, то в рассматриваемой критической точке второго рода перегиба нет. В точке перегиба кривая пересекает касательную.

Пример. Определить интервалы выпуклости и вогнутости, точки перегиба графика функции .

Решение. Область определения функции – интервал .

Найдем первую и вторую производные функции

,

.

Так как при любом значении , то кривая вогнута на всем интервале . Точек перегиба нет.

Пример. Определить интервалы выпуклости и вогнутости и точки перегиба графика функции .

Решение. Область определения функции – интервал .

Найдем первую и вторую производные функции

, .

Решаем уравнение и находим, что . Это единственная критическая точка. Она делит область определения функции на два интервала и .

 
 


– +

 

На интервале кривая выпукла , а на интервале – вогнута . Таким образом, при переходе через точку вторая производная меняет знак. Эта точка является точкой перегиба. Ее координаты .

 

Асимптоты

 

Определение. Если расстояние от кривой , имеющей бесконечную ветвь, до некоторой определенной прямой по мере удаления точки по этой кривой от начала координат в бесконечность, стремится к нулю, то прямая называется асимптотой данной кривой.

Различают асимптоты: вертикальные и наклонные.

 

1. Кривая имеет вертикальную асимптоту , если при , или при . Для определения вертикальных асимптот надо отыскать те значения аргумента, вблизи которых неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются , то уравнения вертикальных асимптот будут

; ; …

Вертикальные асимптоты – это нули знаменателя функции. Например, . Здесь две вертикальные асимптоты: ,

2. Для определения наклонной асимптоты кривой надо найти числа и по формулам

,

(иногда следует отдельно рассматривать случаи и ).