Физиологическое действие метеорологических условий на человека

 

Теплообмен человека с окружающей средой. Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих существенное влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий отопления и вентиляции.

Жизнедеятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Ее количество зависит от степени физического напряжения в определенных климатических условиях и составляет от 85 Дж/с (в состоянии покоя) до 500 Дж/с (при тяжелой работе). Для того чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и как следствие к потери трудоспособности, быстрой утомляемости, потери сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела (внутренних органов) порядка 36,5 °С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха температура тела может повышаться от нескольких десятых градуса до 1–2 °С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет +43 °С, минимальная +25 °С. Температурный режим кожи играет основную роль в теплоотдаче. Ее температура меняется в довольно значительных пределах и при нормальных условиях средняя температура кожи под одеждой составляет 30–34 °С. При неблагоприятных метеорологических условиях на отдельных участках тела она может понижаться до 20 °С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место, когда тепловыделение Qтп человека полностью воспринимается окружающей средой Qтo, т.е. когда имеет место тепловой баланс Qтп = Qmo . В этом случае температура внутренних органов остается постоянной. Если теплопродукция организма не может быть полностью передана окружающей среде (Qтп > Qтo), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко. Теплоизоляция человека, находящегося в состоянии покоя (отдых сидя или лежа), от окружающей среды приведет к повышению температуры внутренних органов уже через 1 ч на 1,2 °С. Теплоизоляция человека, производящего работу средней тяжести, вызовет повышение температуры уже на 5 °С и вплотную приблизится к максимально допустимой. В случае, когда окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек (Qтп < Qтo), то происходит охлаждение организма. Такое тепловое самочувствие характеризуется понятием холодно.

Теплообмен между человеком и окружающей средой осуществляется конвекцией Qk в результате омывания тела воздухом, теплопроводностью Qт , излучением на окружающие поверхности Qл и в процессе тепломассообмена (Qтм = Qп + Qд) при испарении влаги, выводимой на поверхность кожи потовыми железами Qп и при дыхании Qд:

 

Qтп = Qк + Qт + Qл + Qтм.

 

Конвективный теплообмен определяется законом Ньютона

 

Qк = aкFэ(tпов – tос),

 

где αк – коэффициент теплоотдачи конвекций; при нормальных параметрах микроклимата
αк = 4,06 Вт/(м •°С); tпов–температура поверхности тела человека (для практических расчетов зимой около 27,7 °С, летом около 31,5 °С); tос – температура воздуха, омывающего тело человека; Fэ –эффективная поверхность тела человека (размер эффективной поверхности тела зависит от положения его в пространстве и составляет приблизительно 50–80 % геометрической внешней поверхности тела человека); для практических расчетов Fэ = 1,8 м2. Значение коэффициента теплоотдачи конвекцией можно определить приближенно как

αк = λ/δ,

где λ, – коэффициент теплопроводности газа пограничного слоя, Вт/(м·°С); δ – толщина пограничного слоя омывающего газа, м.

Удерживаемый на внешней поверхности тела пограничный слой воздуха (до 4–8 мм при скорости движения воздуха w = 0) препятствует отдаче теплоты конвекцией. При увеличении атмосферного давления (В) и в подвижном воздухе толщина пограничного слоя уменьшается и при скорости движения воздуха 2 м/с составляет около 1мм. Передача теплоты конвекцией тем больше, чем ниже температура окружающей среды и чем выше скорость движения воздуха. Заметное влияние оказывает и относительная влажность воздуха φ, так как коэффициент теплопроводности воздуха является функцией атмосферного давления и влагосодержания воздуха.

На основании изложенного выше можно сделать вывод, что величина и направление конвективного теплообмена человека с окружающей средой определяется в основном температурой окружающей среды, атмосферным давлением, подвижностью и влагосодержанием воздуха, т.е.

Qк = f(toc;β;w;φ).

Передачу теплоты теплопроводностью можно описать уравнением Фурье:

 

 

где λо –коэффициент теплопроводности тканей одежды человека, Вт/(м∙°С); ∆о – толщина одежды человека м.

Теплопроводность тканей человека мала, поэтому основную роль в процессе транспортирования теплоты играет конвективная передача с потоком крови.

Лучистый поток при теплообмене излучением тем больше, чем ниже температура окружающих человека поверхностей. Он может быть определен с помощью обобщенного закона Стефана – Больцмана:

 

 

где Спр–приведенный коэффициент излучения, Вт/(м2сти К4); F1 площадь поверхности, излучающей лучистый поток, м2; ψ1-2–коэффициент облучаемости, зависящий от расположения и размеров поверхностей F1 и F2 и показывающий долю лучистого потока, приходящуюся на поверхность F1 от всего потока, излучаемого поверхностью F1; T1 средняя температура поверхности тела и одежды человека, К; T2средняя температура окружающих поверхностей, К.

Для практических расчетов в диапазоне температур окружающих человека предметов
10–60 °С приведенный коэффициент излучения Спр ≈ 4,9 Вт/(м2 К4). Коэффициент облучаемости ψ1-2 обычно принимают равным 1,0. В этом случае значение лучистого потока зависит в основном от степени черноты ε и температуры окружающих человека предметов, т.е.

Q^ = f(Tоп;ε).

Количество теплоты, отдаваемое человеком в окружающую среду при испарении влаги, выводимой на поверхность потовыми железами,

 

Qn = Gn × r,

где Gn – масса выделяемой и испаряющейся влаги, кг/с; r скрытая теплота испарения выделяющейся влаги, Дж/кг.

Данные о потовыделении в зависимости от температуры воздуха и физической нагрузки человека приведены в таблице 11. Как видно из таблицы, количество выделяемой влаги меняется в значительных пределах. Так, при температуре воздуха 30 °С у человека, не занятого физическим трудом, влаговыделение составляет 2 г/мин, а при выполнении тяжелой работы увеличивается до 9,5 г/мин.

 

Таблица 11. Количество влаги, выделяемое с поверхности кожи и из легких человека, г/мин

 

Характеристика выполняемой работы (по Н.К. Витте) Температура воздуха, °С
Покой, J = 100 Вт 0,6 0,74 1,69 3,25 6,2
Легкая, J = 200 Вт 1,8 2,4 3,0 5,2 8,8
Средней тяжести, J = 350 Вт 2,6 3,0 5,0 7,0 11,3
Тяжелая, J = 490 Вт 4,9 6,7 8,9 11,4 18,6
Очень тяжелая, J = 695 Вт 6,4 10,4 11,0 16,0 21,0

 

Количество теплоты, отдаваемой в окружающий воздух с поверхности тела при испарении пота, зависит не только от температуры воздуха и интенсивности работы, выполняемой человеком, но и от скорости окружающего воздуха и его относительной влажности, т.е.

Qп=f(tос; В;w; φ; J),

где J – интенсивность труда, производимого человеком, Вт.

В процессе дыхания воздух окружающей среды, попадая в легочный аппарат человека, нагревается и одновременно насыщается водяными парами. В технических расчетах можно принимать (с запасом), что выдыхаемый воздух имеет температуру 37 °С и полностью насыщен.

Количество теплоты, расходуемой на нагревание вдыхаемого воздуха,

 

 

где VЛВобъем воздуха, вдыхаемого человеком в единицу времени, «легочная вентиляция», м3/с; ρвд – плотность вдыхаемого влажного воздуха, кг/м3 ; Ср – удельная теплоемкость вдыхаемого воздуха, Дж/(кг•˚С); tвыд – температура выдыхаемого воздуха, °С; tад – температура вдыхаемого воздуха, °С.

«Легочная вентиляция» определяется как произведение объема воздуха вдыхаемого за один вдох, Vв-в, м3 на частоту дыхания в секунду п:

Vлв=Vв-вn.

Частота дыхания человека непостоянна и зависит от состояния организма и его физической нагрузки. В состоянии покоя она составляет 12–15 вдохов-выдохов в минуту, а при тяжелой физической нагрузке достигает 20–25. Объем одного вдоха-выдоха является функцией производимой работы. В состоянии покоя с каждым вдохом в легкие поступает около 0,5 л воздуха. При выполнении тяжелой работы объем вдоха-выдоха может возрастать до 1,5–1,8 л.

Среднее значение “легочной вентиляции” в состоянии покоя примерно 0,4–0,5 л/с, а при физической нагрузке в зависимости от ее напряжения может достигать 4 л/с.

Таким образом, количество теплоты, выделяемой человеком с выдыхаемым воздухом Qт, зависит от его физической нагрузки, влажности и температуры окружающего (вдыхаемого) воздуха

Qт = f(J;φ;tос).

Чем больше физическая нагрузка и ниже температура окружающей среды, тем больше отдается теплоты с выдыхаемым воздухом. С увеличением температуры и влажности окружающего воздуха количество теплоты отводимой через дыхание, уменьшается.

Анализ приведенных выше уравнений позволяет сделать вывод что тепловое самочувствие человека, или тепловой баланс в системе человек – среда обитания зависит от температуры среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физической нагрузки организма

Qтп = f(toc;w;ψ;B;Tоп;J).

Параметры – температура окружающих предметов и интенсивность физической нагрузки организма – характеризуют конкретную производственную обстановку и отличаются большим многообразием. Остальные параметры – температура, скорость, относительная влажность и атмосферное давление окружающего воздуха – получили название параметров микроклимата.

Влияние параметров микроклимата на самочувствие человека.Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Например, понижение температуры и повышение скорости воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. Повышение скорости воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота.

При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 30 °С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116 °С. На рисунке 10 представлены ориентировочные данные о переносимости температур, превышающих 60 °С. Существенное значение имеет равномерность температуры. Вертикальный градиент ее не должен выходить за пределы 5 °С.

Рисунок 10. Переносимость высоких температур в зависимости от длительности их воздействия: 1 – верхняя граница выносливости; 2 –среднее время выносливости; 3 – граница появления симптомов перегрева

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tос > 30 °С, так как при этом почти все выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнения болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничиваться относительной влажностью в пределах 30–70 %.

Вопреки установившемуся мнению величина потовыделения мало зависит от недостатка воды в организме или от ее чрезмерного потребления. У человека, работающего в течение 3 ч без питья, образуется только на 8 % меньше пота, чем при полном возмещении потерянной влаги. При потреблении воды вдвое больше потерянного количества наблюдается увеличение потовыделения всего на 6 % по сравнению со случаем, когда вода возмещалась на 100 %. Считается допустимым для человека снижение его массы на 2–3 % путем испарения влаги – обезвоживание организма. Обезвоживание на 6 % влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15–20 % приводит к смертельному исходу.

Вместе с потом организм теряет значительное количество минеральных солей (до 1 %, в том числе 0,4–0,6 NaCI). При неблагоприятных условиях потеря жидкости может достигать 8–10 л за смену и в ней до 60 г поваренной соли (всего в организме около 140 г NaCI). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечнососудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки.

Для восстановления водного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NaCI) газированной питьевой водой из расчета 4–5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня – гипертермии – состоянию, при котором температура тела поднимается до 38–39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение. Пульс и дыхание учащены, в крови увеличивается содержание азота и молочной кислоты. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма – гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличивается, изменяется углеводный обмен. Прирост обменных процессов при понижении температуры на 1 °С составляет около 10 %, а при интенсивном охлаждении он может возрасти в 3 раза по сравнению с уровнем основного обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задер­живать снижение температуры внутренних органов. Результатом дей­ствия низких температур являются холодовые травмы.

Параметры микроклимата оказывают существенное влияние и на производительность труда. Так, повышение температуры с 25 до 30 °С в прядильном цехе Ивановского камвольного комбината привело к снижению производительности труда и составило 7 %. Институт гигиены труда и профзаболеваний АМН РФ установил, что производительность труда работников машинострои­тельного предприятия при температуре 29,4 °С снижается на 13 %, а при температуре 33,6 °С на 35 % по сравнению с производительностью при 26 °С.

В горячих цехах промышленных предприятий большинство техно­логических процессов протекает при температурах, значительно пре­вышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, кото­рые могут привести к отрицательным последствиям. При температуре до 500 °С с нагретой поверхности излучаются тепловые (инфракрасные) лучи с длиной волны 740–0,76 мкм, а при более высокой температуре наряду с возрастанием инфракрасного излучения появляются видимые световые и ультрафиолетовые лучи.

Длина волны лучистого потока с максимальной энергией теплового излучения определяется по закону смещения Вина (для абсолютного черного тела)

 

λEmax = 2,9∙103/T.

 

У большинства производственных источников максимум энергии приходится на инфракрасные лучи (λEmax > 0,78 мкм).

Инфракрасные лучи оказывают на организм человека в основном тепловое действие. Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насы­щенность крови, понижается венозное давление, замедляется кровоток и как следствие наступает нарушение деятельности сердечнососудистой и нервной систем.

По характеру воздействия на организм человека инфракрасные лучи подразделяются на коротковолновые лучи с длиной волны 0,76–1,5 мкм и длинноволновые с длиной более 1,5 мкм. Тепловые излучения коротковолнового диапазона глубоко проникают в ткани и разогревают их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделение, а при длительном облучении – тепловой удар. Длинноволновые лучи глубоко в ткани не проникают и погло­щаются в основном в эпидермисе кожи. Они могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Кроме непосредственного воздействия на человека лучистая теп­лота нагревает окружающие конструкции. Эти вторичные источники отдают теплоту окружающей среде излучением и конвекцией, в резуль­тате чего температура воздуха внутри помещения повышается.

Общее количество теплоты, поглощенное телом, зависит от размера облучаемой поверхности, температуры источника излучения и рассто­яния до него. Для характеристики теплового излучения принята величина, названная интенсивностью теплового облучения. Интенсивность теплового облучения JE — это мощность лучистого потока, приходя­щаяся на единицу облучаемой поверхности.

Облучение организма малыми дозами лучистой теплоты полезно, но значительная интенсивность теплового излучения и высокая тем­пература воздуха могут оказать неблагоприятное действие на человека. Тепловое облучение интенсивностью до 350 Вт/м2 не вызывает непри­ятного ощущения, при 1050 Вт/м2 уже через 3–5 мин на поверхности кожи появляется неприятное жжение (температура кожи повышается на 8–10°С), а при 3500 Вт/м2 через несколько секунд возможны ожоги. При облучении интенсивностью 700–1400 Вт/м2 частота пульса увели­чивается на 5–7 ударов в минуту. Время пребывания в зоне теплового облучения лимитируется в первую очередь температурой кожи, болевое ощущение появляется при температуре кожи 40–45 ˚С (в зависимости от участка).

Интенсивность теплового облучения на отдельных рабочих местах может быть значительной. Например, в момент заливки стали в форму она составляет 12 000 Вт/м2; при выбивке отливок из опок 350–2000 Вт/м2, а при выпуске стали из печи в ковш достигает 7000 Вт/м2.

Атмосферное давление оказывает существенное влияние на про­цесс дыхания и самочувствие человека. Если без воды и пищи человек может прожить несколько дней, то без кислорода — всего несколько минут. Основным органом дыхания человека, посредством которого осуществляется газообмен с окружающей средой (главным образом О2 и СO2), является трахибронхиальное дерево и большое число легочных пузырей (альвеол), стенки которых пронизаны густой сетью капилляр­ных сосудов. Общая поверхность альвеол взрослого человека составляет 90–150 м2. Через стенки альвеол кислород поступает в кровь для питания тканей организма.

Наличие кислорода во вдыхаемом воздухе — необходимое, но не­достаточное условие для обеспечения жизнедеятельности организма. Интенсивность диффузии кислорода в кровь определяется парциаль­ным давлением кислорода в альвеолярном воздухе (Po2,мм рт. ст.).

Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода в пределах 95–120мм рт. ст. Изменение Po2 вне этих пределов приводит к затруднению дыхания и увеличению нагрузки на сердечнососудистую систему. Так, на высоте 2–3 км
(Po2 ≈ 70мм рт. ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. Но даже длительное пребывание человека в этой зоне не сказывается существенно на его здоровье, и она называется зоной достаточной компенсации. С высоты 4 км (Po2 ≈ 60мм рт. ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода (2≈ 21 %), может наступить кислородное голодание – гипоксия. Основные признаки гипоксии – головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

Как показали исследования, удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом (VO2 = 100 %) до высоты около 12 км. При длительных полетах на летательных аппаратах на высоте более 4кмприменяют либо кислородные маски, либо скафандры, либо герметизацию кабин. При нарушении герметизации давление в кабине резко снижается. Часто этот процесс протекает так быстро, что имеет характер своеобразного взрыва и называется взрывной декомпрессией. Эффект воздействия взрывной декомпрессии на организм зависит от начального значения и скорости понижения давления, от сопротивления дыхательных путей человека, общего состояния организма.

В общем случае чем меньше скорость понижения давления, тем легче она переносится. В результате исследований установлено, что уменьшение давления на 385 мм рт. ст. за 0,4 с человек переносит без каких-либо последствий. Однако новое давление, которое возникает в результате декомпрессии, может привести к высотному метеоризму и высотным эмфиземам. Высотный метеоризм – это расширение газов, имеющихся в свободных полостях тела. Так, на высоте 12 км объем желудка и кишечного тракта увеличивается в 5 раз. Высотные эмфиземы, или высотные боли – это переход газа из растворенного состояния в газообразное.

В ряде случаев, например при производстве работ под водой, в водонасыщенных грунтах работающие находятся в условиях повышенного атмосферного давления. При выполнении кессонных и глубоководных работ обычно различают три периода: повышения давления – компрессия; нахождения в условиях повышенного давления и период понижения давления –декомпрессия. Каждому из них присущ специфический комплекс функциональных изменений в организме.

Избыточное давление воздуха приводит к повышению парциального давления кислорода в альвеолярном воздухе, к уменьшению объема легких и увеличению силы дыхательной мускулатуры, необходимой для производства вдоха-выдоха. В связи с этим работа на глубине требует поддержания повышенного давления с помощью специального снаряжения или оборудования, в частности кессонов или водолазного снаряжения.

При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса. Длительное пребывание при избыточном давлении приводит к токсическому действию некоторых газов, входящих в состав вдыхаемого воздуха. Оно проявляется в нарушении координации движений, возбуждении или угнетении, галлюцинациях, ослаблении памяти, расстройстве зрения и слуха.

Наиболее опасен период декомпрессии, во время которого и вскоре после выхода в условиях нормального атмосферного давления может развиться декомпрессионная (кессонная) болезнь. Сущность ее состоит в том, что в период компрессии и пребывания при повышенном атмосферном давлении организм через кровь насыщается азотом. Полное насыщение организма азотом наступает через 4 ч пребывания в условиях повышенного давления.

В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация азота из тканей. Выделение азота осуществляется через кровь и затем легкие. Продолжительность десатурации зависит в основном от степени насыщения тканей азотом (легочные альвеолы диффундируют 150 мл азота в минуту). Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию и как ее проявление – декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение и перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление ее движения.

Терморегуляция организма человека. Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются параметры микроклимата. В естественных условиях на поверхности Земли (уровень моря) эти параметры изменяются в существенных пределах. Так, температура окружающей среды изменяется от – 88 до +60 °С; подвижность воздуха – от 0 до 100 м/с; относительная влажность – от 10 до 100 % и атмосферное давление – от 680 до 810 мм рт. ст.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °С. Процессы регулирования тепловыделений осуществляются в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем заключается в изменении интенсивности происходящих в организме окислительных процессов. Например, мышечная дрожь, возникающая при сильном охлаждении организма, повышает выделение теплоты до 125–200 Дж/с.

Терморегуляция путем изменения интенсивности кровообращения заключается в способности организма регулировать подачу крови (которая является в данном случае теплоносителем) от внутренних органов к поверхности тела путем сужения или расширения кровеносных сосудов. Перенос теплоты с потоком крови имеет большое значение вследствие низких коэффициентов теплопроводности тканей человеческого организма – 0,314–1,45 Вт/(м. °С) При высоких температурах окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает большое количество крови и, следовательно, больше теплоты отдается окружающей среде. При низких температурах происходит обратное явление: сужение кровеносных сосудов кожи, уменьшение притока крови к кожному покрову и, следовательно, меньше теплоты отдается во внешнюю среду (рисунок 11).

Как видно из рисунка 11, кровоснабжение при высокой температуре среды может быть в 20–30 раз больше, чем при низкой. В пальцах кровоснабжение может изменяться даже в 600 раз.

Терморегуляция путем изменения интенсивности потовыделения заключается в изменении процесса теплоотдачи за счет испарения. Испарительное охлаждение тела человека имеет большое значение. Так, при tос=18 °С, φ = 60 %, w = О количество теплоты, отдаваемой человеком в окружающую среду при испарении влаги, составляет около 18 % общей теплоотдачи. При увеличении температуры окружающей среды до +27 °С доля Qп возрастает до 30 % и при 36,6 °С достигает 100 %.

Рисунок 11. Зависимость кровоснабжения тканей организма от температуры окружающей среды

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур.

На рисунках 12 и 13 приведены тепловые балансы человека при различных объемах производимой работы в разных условиях окружающей среды.

 

   
Рисунок 12. Тепловой баланс работающего человека и зависимости от нагрузки (v – скорость езды на велосипеде, Р – нагрузка, O1 – тепловыделение, Q2 – теплоотдача): 1 – изменение общей затраты энергии организма; 2 – механическая работа; 3 – тепловыделения; 4 – изменение суммарной теплоотдачи (Ок. Qт. Ол); 5– теплота, отданная при испарении пота с поверхности тела Рисунок 13. Тепловой баланс работающего человека в зависимости от температуры среды (Q1 – тепловыделение, Q2 – теплоотдача): 1–суммарная энергии организма; 2–мускульная работа, 3 – выделенная теплота; 4 – теплота, переданная теплопроводностью и конвекцией; 5 – теплота, переданная излучением; 6 – теплота, отданная при испарении пота; 7 – теплота, потерянная с каплями пота

 

Тепловой баланс, приведенный на рисунке 12, составлен по экспериментальным данным для случая езды на велосипеде при температуре воздуха 22,5 °С и относительной влажности 45 %; на рисунке 13 приведен тепловой баланс человека, идущего со скоростью 3,4 км/ч при различных температурах окружающего воздуха и постоянной относительной влажности 52 %. Приведенные на рисунке 12 и 13 примеры процесса теплообмена человека с окружающей средой построены при условии соблюдения теплового баланса Qтп=Qто, поддержанию которого способствовал механизм терморегуляции организма. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность труда имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: Qк + Qт≈30%; Qд ≈ 45%;
Qп ≈ 20% и Qл ≈ 5 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата воздушной среды, которые обусловливают оптимальный обмен веществ в организме и при которых нет неприятных ощущений и напряженности системы терморегуляции, называются комфортными или оптимальными. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом и нет напряжения системы терморегуляции, называется зоной комфорта. Условия, при которых нормальное тепловое состояние человека нарушается, называются дискомфортными.При незначительной напряженности системы терморегуляции и небольшой дискомфортности устанавливаются допустимые метеорологические условия.

Гигиеническое нормирование параметров микроклимата производственных помещений. Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный –
ниже +10 °С

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50 % и более работающих в соответствующем помещении.

К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140–174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175–232 Вт (категория IIа) и 233–290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIб – работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты – разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении. Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты – это избытки теплоты, не превышающие или равные 23 Вт на 1 м3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м3.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50 % поверхности человека и более, 70 Вт/м2 – при облучении 25–50 % поверхности и 100 Вт/м2 – при облучении не более 25 % поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25 % поверхности тела и обязательно использование средств индивидуальной защиты.

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005–88 могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия – это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.