Умножение вектора на скаляр

Пусть заданы вектор и скаляр n. Найдем произведение вектора и скалярного вектора n.

В результате умножения вектора на скаляр мы получаем новый вектор :

Направление вектора такое же, как направление вектора при .

Направление вектора противоположно направлению вектора при .

Модуль вектора в n раз больше модуля вектора , если .

 

Скалярное и векторное произведения

Скалярное произведение

Из двух векторов и можно образовать скаляр по правилу:

Это выражение называется скалярным произведением векторов и и обозначается одним из символов , или .

Следовательно, . = .

По определению скалярное произведение обладает следующими свойствами:

1) ,

2) ,

3)

Векторное произведение

Из двух векторов и можно образовать новый вектор:

, где

Модуль нового результирующего вектора находим по формуле:

.

Эта операция называется векторным произведением векторов и и обозначается одним из символов или .

Также общеизвестна формула

,

где - угол между векторами и .

Направление вектора можно найти, используя следующий прием. Мысленно совмещаем продольную ось буравчика (правого винта, штопора) с перпендикуляром к плоскости, в которой лежат перемножаемые векторы (в данном примере – векторы и ). Затем начинаем вращать головку винта (ручку штопора) по направлению кратчайшего поворота от первого сомножителя ко второму, то есть от вектора к вектору . Направление движения тела винта и будет являться направлением вектора . Этот прием называется правилом правого винта или правилом буравчика (см. рис.).

 

В терминах векторного произведения выражаются момент силы, момент импульса и др. Говоря о векторе, всегда имеем ввиду его компоненты. Вектор, в отличие от скаляра, определяется тремя числами. Поэтому такие операции как сложение, вычитание, скалярное и векторное произведения сводятся к привычным действиям с компонентами.

Производная и интеграл

Производная и ее применения

Пусть функция у=f(х) определена в точках х и х1 .Разность х1 - х называется приращением аргумента, а разность f(х1) - f(х) - приращением функциипри переходе от значения аргумента х к значению аргумента х1. Приращение аргумента обозначают , приращение функции обозначают или .

Если существует предел отношения приращения функции к приращению аргумента при условии, что , то функция у=f(х) называется дифференцируемой в точке х, а этот предел называется значением производной функции у=f(х) в точке х и обозначается или .

Операцию отыскания производной называют дифференцированием.