Надежность измерения социальных характеристик

Описанные выше способы построения шкал не дают полного представления о свойствах полученных оценок. Для этого необхо­димы дополнительные процедуры, результаты которых будем опи­сывать в терминах ошибок измерения. Назовем это проблемой на­дежности измерения. Рассмотрим ее решение на пути выявления правильности измерения, его устойчивости и обоснованности.

Компоненты надежного измерения. При изучении правильности -устанавливается общая приемлемость данного способа измерения. Непосредственно понятие правильности связано с возможностью учета в результате измерения различного рода систематических оши­бок. Систематические ошибки имеют некоторую стабильную приро­ду возникновения: либо они являются постоянными, либо меняются по определенному закону.

Устойчивость характеризует степень совпадения результатов измерения при повторных применениях измерительной процедуры и описывается величиной случайной ошибки. Наиболее сложный вопрос надежности измерения — его обоснованность. Обоснованность связана с доказательством того, что измерено вполне определенное заданное свойство объекта, а не некоторое другое, более или менее на него похожее.

При установлении надежности следует иметь в виду, что в процессе измерения участвуют три составляющие: объект измере­ния, измеряющие средства, с помощью которых производится ото­бражение свойств объекта на числовую систему, и субъект, произ­водящий измерение. Предпосылки надежного измерения кроются в каждой отдельной составляющей.

Прежде всего сам объект в отношении измеряемого свойства может обладать значительной степенью неопределенности. Так, за­частую у индивида нет четкой иерархии жизненных ценностей, а следовательно, нельзя получить и абсолютно точные данные, ха­рактеризующие важность для него тех или иных явлений.

Но может быть и так, что способ получения оценки не обеспе­чивает максимально точных значений измеряемого свойства. Напри­мер, у респондента существует определенная иерархия ценностей, а для получения информации используется номинальная оценка с вариациями ответов от «очень важно» до «совсем неважно». Как правило, из приведенного набора все ценности помечаются ответами «очень важно», «важно», хотя реально у респондента имеется боль­шее число уровней значимости.

Наконец, при наличии высокой точности первых двух составляющих измерения субъект, производящий измерение, допускает грубые ошибки. Например, в процессе клинического интервью, в хо­де которого должна быть выявлена система Ценностей опрашивае­мого, интервьюер не смог довести до респондента суть беседы, не смог добиться доброжелательного отношения к исследованию и пр.

Каждая составляющая процесса измерения может быть источ­ником ошибки, связанной либо с устойчивостью, либо с правильностью, либо с обоснованностью. Однако, как правило, исследова­тель не в состоянии разделить эти ошибки по источникам их про­исхождения и поэтому изучает ошибки устойчивости, правильности и обоснованности всего измерительного комплекса в совокупности. При этом правильность (как отсутствие систематических ошибок): и устойчивость информации —элементарные предпосылки надеж­ности. Наличие существенной ошибки в этом отношении уже сво­дит на нет проверку данных измерения на обоснованность.

В отличие от правильности и устойчивости, которые 'могут быть измерены достаточно строго и выражены в форме числового пока­зателя, критерии обоснованности определяются либо на основе логических рассуждений, либо на основе косвенных показателей. В смежных с социологией науках, например в психологии, проблема обоснованности теста решается путем сопоставления его результатов с результатами внешнего критерия — с известной груп­пой или с данными реального поведения. В социологии такой при­дем, как правило, не удается использовать, поэтому обычно применяется сравнение данных одной методики с данными других: методик или исследований, т. е. обоснованность устанавливается более косвенным путем. При этом, разумеется, не обязательно до­биваться полного соответствия результатов. Достаточным будет уста­новление общих тенденций, что зависит и от соотносительной зна­чимости самих критериев, и от их функции в общем замысле ис­следования.

Правильность измерения — выявление систематических ошибок. Прежде чем приступать к изучению таких компонентов надежно­сти, как устойчивость и обоснованность. Необходимо убедиться в правильности выбранного инструмента измерения (шкалы или, си­стемы шкал).

Возможно, что последующие этапы окажутся излишними, если в самом начале выяснится полная неспособность данного инстру­мента на требуемом уровне дифференцировать изучаемую совокуп­ность, или может оказаться, что систематически не используется какая-то часть шкалы или ее отдельная градация. Прежде всего нужно ликвидировать или уменьшить такого рода недостатки шкалы и только затем использовать ее в исследовании,

Отсутствие разброса, ответов по значениям шкалы. Попадание ответов в один, пункт свидетельствует о полной непригодности из­мерительного инструмента — шкалы. Такая ситуация может воз­никнуть или из-за «нормативного» давления в сторону общепринятого мнения; или из-за того, что градации(значения) шкалы по­имею? отношения к определению данного свойства рассматривае­мых объектов (нерелевантны).

Например, если все опрашиваемые респонденты согласны с ут­верждением «хорошо, когда работа или задание требуют универ­сальных знаний», нет ни одного ответа «не согласен», остается только зафиксировать этот факт, однако подобная шкала не по­может дифференцировать изучаемую совокупность по отношению респондентов» к работе.

Часто примером нерелевантности являются многие исходные шкалы методики семантического дифференциала Осгуда. Так, в ча­стности, при изучении установок инженера в работе измерения респондентов по шкалам «мужской — женский», «горячий — холод­ный» и др. давали оценку только в середине шкалы, в нейтральной точке, Уточнение позволило сделать вывод, что эти шкалы, по мнению респондентов, не, имеют отношения к изучаемым установкам.

Использование части шкалы. Довольно часто - обнаруживается, что практически работает лишь какая-то часть шкалы, какой-то один из его полюсов с прилегающей более или менее обшир­ной зоной.

Так, если респондентам для оценки предлагается шкала, имею­щая положительный и. отрицательный полюса, в частности от +3 до —3, то при оценивании какой-то заведомо положительной ситуа­ции респонденты не используют отрицательные оценки, а диффе­ренцируют свое мнение лишь с помощью положительных. Для того чтобы вычислить значение относительной ошибки измерения, ис­следователь должен знать определенно, какой же метрикой поль­зуется респондент — всеми семью градациями шкалы или только четырьмя положительными. Так, ошибка измерения в 1 балл мало о чем говорит, если мы не знаем, какова действительная вариация мнений.

Пример13. Девятнадцати испытуемым было предложено выска­зать отношение к трем понятиям по семи шкалам к каждому. Шкалы имели по 21 градации с крайними полюсами +10 и —10 и средней точкой 0. В целом получено 399 (19 • 3 • 7) оценок соследующим распределением:

Поскольку значения аi< 0 использовались всего лишь 11 раз: (3 + 3 + 5) из 399, т. е. в 2,8% случаев, то возникает вопрос, дей­ствует ли отрицательная часть этой шкалы. Возможно, что попа­дание в эту часть шкалы — явление чисто, случайное. Проверим предположение.

Будем считать, что если вероятность попадания в конец шкалы превышает 5% при достаточно малом уровне значимости (a == 0,05 или a=0,01), то наблюдаемые попадания ответов являются случайными и соответствующая часть шкалы «не работает». Для этого границы доверительного интервала, построенного по имею­щейся частоте для вероятности попадания в конец шкалы, сравним со значением 5 %. Если значение 5% оказывается выше границ этого интервала, то следует признать, что проверяемая часть шкалы «не работает».

Для расчета границ доверительного интервала воспользуемся формулами14

Здесь т — доля попаданий в проверяемую часть шкалы; га — объем выборочной совокупности данных; Z — коэффициент доверия, соответствующий 2a (о доверительном оценивании см. с. 211).

Для рассматриваемого примера т — 0,0276; п — 399; Za = l,96 для а = 0,05. Подставляя эти значения в формулы, получим pt = 0,016, pz = 0,049. То же самое в процентах: р1 = 1,6%; р2 = 4,9%. Поскольку значение 5% не принадлежит интервалу (1,6%; 4,9%), то считаем, что отрицательная часть шкалы (аi < 0) «не работает», следовательно, 21-балльная оценка функционирует лишь в области от +10 до 0.

Для вопросов, имеющих качественные градации ответов, можно применять подобное требование в отношении каждого пункта шка­лы: каждый из них должен набирать не менее 5% ответов, в про­тивном случае считаем этот пункт шкалы неработающим.

Требование 5%-го уровня наполнения в двух рассмотренных задачах не следует рассматривать как строго обязательное; в за­висимости от задач исследования могут быть выдвинуты большие или меньшие значения этих уровней.

Неравномерное использование отдельных пунктов шкалы. Слу­чается, особенно при использовании упорядоченных шкал, града­ции которых сопровождаются словесными описаниями, что некото­рое значение переменной (признака) систематически выпадает из поля зрения респондентов, хотя соседние градации, характеризующие более низкую и более высокую степень выраженности при­знака, имеют существенное наполнение.

Так, если конфигурация распределения ответов на вопрос с четырьмя упорядоченными градациями такая, как на рис. 14, то, видимо, шкала неудачно сформулирована. Значительное наполнение двух соседних пунктов (1 и о) свиде­тельствует о «захвате» части голосов из плохо, сформулированного пункта 2. Аналогичная картина наблюдается и в том случае, когда респонденту предлагают шкалу, имеющую слишком большую дробность: будучи не в, со­стоянии оперировать всеми градация­ми шкалы, респондент выбирает лишь несколько базовых. Например, зачастую десятибалльную шкалу респонденты расценивают как некоторую модифи­кацию пятибалльной, предполагая, что «десять» соответствует «пяти», «восемь» — «четырем», «пять» — «трем» и т. д. При этом базовые оценки используются значительно чаще, чем другие.

Для выявления указанных аномалий равномерного распределе­ния по шкале можно предложить следующее правило: для достаточ­но большой доверительной вероятности (1 — a >=0,99) и, следова­тельно, в достаточно широких границах наполнение каждого зна­чения не должно существенно отличаться от среднего из соседних наполнений.

Соответствующий статистический критерий таков:

Эта величина имеет хи-квадрат распределение с одной степенью свободы (df = 1).

Здесь i — номер значения признака, который подвергается ана­лизу; пiнаблюдаемая частота дли этого значения;

 

Пример.Рассмотрим случай измерения в десятибалльной шкале ряди ценностей типа «любимая работа», «материальный достаток», «здоровье» и т. д. При 45 испытуемых и 14 предложенных ценно­стях получены 623 оценки, распределение которых выглядит так.

Поскольку предполагается, что шкала должна «работать» равно­мерно, то, возможно, пункты шкалы 9, 7, 5 не удовлетворяют этому требованию.

Для оценки аi = 9 наблюдаемая частота n9 = 67,Г ожидаемая —

 

Подставим данные значения в формулу c2 и получим расчетную величину c2 = 22,93. Поскольку c2 = 22,93>c2 кр = 6,63 (a=0,01), то следует признать различие между наблюдаемой и ожидаемой частотами значимым. Следовательно, частота 67 для оцейки а = 9 «лишком Мала но сравнению с соседними.

Аналогичные расчеты проводятся для пунктов шкалы а = 7 и а=5; частота пункта 7 (n7= 60) не противоречит выдвинутому требованию равномерности; частота оценки 5 (n5 = 81) слишком велика по сравнению с соседними и, таким образом, противоречит | требованию равномерности. 1

Определение грубых ошибок. В процессе измерения иногда возникают грубые ошибки, причиной которых могут быть неправильные записи исходных данных, плохие расчеты, неквалифицированное использование измерительных средств и т. п. Это проявляется в том, что в рядах измерений попадаются данные, резко отличающиеся от совокупности всех остальных значений. Чтобы выяснить, нужно ли эти значения признать грубыми ошибками, устанавли­вают критическую границу так, чтобы вероятность превышения ее крайними значениями была достаточно малой и соответствовала некоторому уровню значимости а. Это правило основано на том, что появление в выборке чрезмерно больших значений хотя и возможно как следствие естественной вариабельности значений, но мало­вероятно.

Если окажется, что какие-то крайние значения совокупности принадлежат ей с очень малой вероятностью, то такие значения, признаются грубыми ошибками и исключаются из дальнейшего рас­смотрения. Выявление грубых ошибок особенно важно проводить для выборок малых, объемов: не будучи исключенными из анализа, они существенно искажают параметры выборки:

Статистический критерий t определения грубых ошибок таков , где t >tкр в качестве t выступает либо t max либо t min)15

 

 

Здесь xmin и xmax являются крайними членами некоторой совокуп­ности значений {х}.

В табл. XII, приводимой В. Ю. Урбахом16, даны критические значения t, соответствующие различным объемам выборки для до­верительных уровней: a= 0,05 и a= 0,01.

Например, при выборке в 50 единиц значение t для уровня a= 0,05 будет 3,16.

Если t расчетное окажется больше t критического, то соответствующее хсчитается маловероятным и отбрасывается как грубая ошибка.

Пример. Представим, что получены распределения по признаку с такими выборочными параметрами: х=0,012; s = 0,160 (при объеме выборки n= 29 респондентов). В этом распределении край­ними значениями оказались такие: xmin= 0,50; xmax =0,250. Су­щественное подозрение вызывает значение, равное —0,500, посколь­ку среднее значение этого признака близко к 0 (0,012), а вариация его значений невелика (s = 0,160).

Так как для n=29 и a=0,05 tкр = 2,94,"то с вероятностью 0,95 можно признать, что значение признака х= — 0,500 слишком мало для данной совокупности, и поэтому является грубой ошибкой а х0,250 не относится к резко выделяющимся значениям.

Итак, дифференцирующая способность шкалы как первая существенная характеристика ее надежности предполагает: обеспече­ние достаточного разбора данных, выявление фактического использования респондентом предложенной протяженности шкалы; анализ отдельных «выпадающих» значений, исключение грубых ошибок. После того как установлена относительная приемлемость используемых шкал в указанных аспектах, следует переходить к выявлению устойчивости измерения по этой шкале.

Устойчивость измерения.

О высокой надежности шкалы можно говорить лишь в том случае, если повторные измерения при помощи одних и тех же объектов дают сходные результаты устойчивость проверяется на одной и той же выборке исследуемых объектов (респондентов). Сравнение же средних оценок разных выборок ничего не говорит об устойчивости измерения как таковом, а толь­ко лишь о репрезентативности выборок и их соответствий одной, и той же совокупности. Обычно устойчивость проверяй проведе­нием двух последовательных замеров с определенным временным интервалом — таким, чтобы этот промежуток не был слишком велик, чтобы сказалось изменение самого объекту но не слишком май, чтобы респондент мог по памяти «подтягивать» данные второго замера к предыдущему (т. е. его протяженность зависит от (объекта изучения и колеблется от двух до трех недель).

Осуществление более двух измерений связано с трудностями организации эксперимента и накапливанием ошибок другой при­роды, не связанной, с устойчивостью.

Пусть х — изучаемый на устойчивость признак, а отдельные его значения— х1, x2…хк. Каждый респондент l(l=1,…n) и при первом и при втором опросах получает некоторую оценку по изучаемому признаку — x1lи x2lсоответственно/

Результаты двух опросов в респондентов заносятся в таблицу сопряженности (табл. 30), которая служит основой для дальнейшего изучения вопросов устойчивости. Здесь nijчисло респондентов, выбравших в первом опросе ответ хi и заменивших его при втором опросе на ответ xj.

Существует традиция изучать устойчивость с помощью анализа корреляций между ответами проб I и II. Однако этот подход не­достаточно эффективен, поскольку не учитывает многих аспектов устойчивости.

 

Остановимся на более результативных показателях.

1. Показателем абсолютной устойчивости шкалы назовем вели­чину, показывающую долю совпадающих ответов в последователь­ных пробах.

Этот показатель использует не всю информацию, содержащуюся в соотношении ответов проб I и II, а базируется лишь на частотах совпадающих ответов. Однако он хорош, например, для характе­ристики устойчивости качественных признаков.

Для описания устойчивости количественных признаков его не­достаточно, поскольку при большом числе градаций доля совпада­ющих ответов будет чрезвычайно мала назначение W мало информативно. Здесь пригодны показатели неустойчивости, т. е. величи­ны ошибки, учитывающие не просто факт несовпадения ответов, а степень этого несовпадения. Ошибки рассчитываются по край­ней мере для порядковых признаков.

Линейной мерой несовпадения оценок, является средняя ариф­метическая ошибка, показывающая средний сдвиг в ответах в расчете на одну пару последовательных наблюдений:

 

Здесь х1 и х11ответы по анализируемому вопросу L - го рес­пондента в I и II пробах соответственно.

Пример.Пусть ответы на вопрос в пятибальной шкале для выборки 50 человек распределились, как в табл. 31.

Таким образом, в I пробе оценку «1» дали 9 респондентов, из них только трое повторили ее в пробе II, пятеро отметили «2», один дал оценку «3» и т. д.

 

Данный показатель использует всю информацию, содержащуюся в распределении, хорошо интерпретируется как средний сдвиг в ответах одного респондента, однако имеет определенные ограниче­ния аналитического характера и поэтому обычно редко использу­ется в статистических расчетах.

Средняя квадратическая ошибка для последовательных дан­ных17 в расчете на одну пару наблюдений выглядит так:

 

 



(совпадение Sx и 1AI в этом примере чисто случайное).

До сих пор речь шла об абсолютный ошибках, размер которых выражался в тех же единицах, что и сама измеряемая величина, например 0,82 балла в пятибалльной шкале. Это не позволяет срав­нивать ошибки измерения разных признаков по разным шкалам. Следовательно, помимо абсолютных, нужны относительные показа­тели ошибок измерения.

В качестве показателя для нормирования абсолютной ошибки можно использовать максимально возможную ошибку в рассмат­риваемой шкале (Dmax).

Если число делений шкалы k, тогда Dmax равно разнице между крайними значениями шкалы (Xmax – Xmin), т. е. k—1, и относи­тельная ошибка имеет вид

 

(здесь |D|— средняя арифметическая ошибка измерения).

Однако зачастую этот показатель «плохо работает» из-за того, что шкала не используется на всей ее протяженности. Поэтому бо­лее показательными являются относительные ошибки, рассчитан­ные по фактически используемой части шкалы, как было рассмот­рено выше. Если число градаций в «работающей» части шкалы обозначить k', то тогда более надежной будет такая оценка ошибки:

 

Если в качестве абсолютной ошибки использовалась средняя квадратическая ошибка S, то показатель относительной ошибки



 

Пример.Допустим, что шкала имеет 7 градаций. При опреде­лении «работающей» части этой шкалы анализируется распреде­ление полученных в I пробе оценок:

 

Здесь на оценки «5», «6»-, «7» приходится лишь 11 наблюдений, т. е. 2,26%. Проверка согласно критерию (формула (1)) устанав­ливает, что эта часть шкалы «не работает»; т. е. используются лишь градации 1, 2, 3, 4, поэтому Dmaх = 4 — 1 = 3. На основании соотношения ответов в I и II пробах находим сдвиги в ответах (ошиб­ки). Распределение ошибок по этой шкале оказалось следующим:

 

измерения. Однако оценка по k также является довольно грубой и не использует всю информацию, содержащуюся в ответах I пробы ведь реально не все оценки могут дать максимальный сдвиг, а только крайние на шкале.

Оценим для приведенного распределения максимальный сдвиг по реально работающей части шкалы: только крайние значения (233, 78 + 11) могут дать сдвиг в 3 балла, 106 и 59 ответов могут дать максимальный сдвиг в 2 балла. Таким образом, возможный сдвиг для данного исходного распределения «может быть равен средней в 2,6 балла четырех балльной шкалы, т. е. фактическая ошибка еще больше: 0,6:2,6= 0,23.

Повышение устойчивости измерения. Для решения этой задачи необходимо выяснить различительные возможности пунктов: исполь­зуемой шкалы, что предполагает четкую фиксацию респондентами отдельных значений: каждая оценка должна быть строго отделена от соседней. На практике это означает, что в последовательных про­бах респонденты практически повторяют свои оценки. Следователь­но, высокой различимости делений шкалы должна соответствовать малая ошибка.

Эту жё задачу можно описать в терминах чувствительности шка­лы, которая характеризуется количеством делений, приходящихся на одну и ту же разность в значениях измеряемой величины, т. е. чем больше градаций в, шкале, тем/больше ее чувствительность. Однако чувствительность нельзя повышать простым увеличением дробности, ибо высокая чувствительность при низкой устойчивости является излишней (например, шкала в 100 баллов, а ошибка из­мерения ±10 баллов).

Во и при малом числе градаций, т. е. при низкой чувствитель­ности, может быть низкая устойчивость, и тогда следует увеличить дробность шкалы. Так бывает, когда респонденту навязывают кате­горические ответы «да», «нет», а он предпочел бы менее жесткие оценки. И потому он выбирает в повторных испытаниях иногда «да», иногда «нет» для характеристики своего нейтрального положения.

Итак, следует найти некоторое оптимальное соотношение меж­ду чувствительностью и устойчивостью. Введём правило: использовать столько градаций в шкале, чтобы ее ошибка была меньше 0,5 балла. - : " .

Если ошибка меньше 0,5 балла, то в последовательных опросах ответы в среднем будут совпадать. При |D| >0,5 балла ответы в последовательных опросах будут в среднем отличаться на 1 балл (и выше).

Существуют способы, «позволяющие добиться требуемой чувстви­тельности.

Пример.В исследовании каждый испытуемый дает 8 оценок некоторым профессиональным качествам инженеров. Значение оце­нок варьирует от +3 до —3. Проведено два измерения. Рассмотрим суммарное распределение оценок по четырем качествам (самостоя­тельность, творчество, инициативность, опытность), данных тринад­цати респондентов (табл. 32).



Всего в табл 32 представлено 416 пар наблюдений: 13 респон­дентов X 8 оценок X 4 качества. Из них в первой пробе 226 оценок имели значение «3»; во второй пробе из них только 170 были по­вторены, 47 оценок получили значение «2», 6 оценок — значение «1» и 3 оценки — значение «О».

 

Таким образом, для исходной оценки «3» средняя оценка во второй пробе стала равной

На основании этого соотношения оценок получим распределение ошибок:

Рассчитаем среднюю арифметическую ошибку çDç= 0,69. Поскольку çDç> 0,5, ищем не различающиеся градации.

Средние оценки по каждой строке сравниваем с помощью кри­терия Стьюдента. Если окажется, что х1 и xi+1 отличаются незначимо (t<tкрит), то далее нужно сравнивать xi и xi+1 и т. д. до значимого отличия средних (tti, i+tзаписаны в последнем столбце табл. 32, а значимы» значения выделены).

Таким образом, оценки «3». и «2» отличаются между собой су­щественно, поскольку критерий Стьюдента фиксирует значимое различие между 2,70 и 2,47; оценки «2» и «1» несущественно отлича­ются друг от друга и т. д. Представим результаты сравнения ис­ходных оценок при помощи схемы разбиения совокупности оце­нок на классы эквивалентности:

Здесь все оценки попадают в три непересекающихся класса: оценка «3» отличается от «2»; «2» и «1» не отличаются друг от друга, но отличаются от соседних оценок; последние четыре значе­ния взаимно неразличимы.

Следовательно, респонденты различают лишь три уровня вме­сто семи предложенных, и шкала должна быть преобразована в трехбалльную, где высокой оценке соответствует исходная оценка в 3 балла, бредней — 2 и 1 балл; низкой — О, —1, —2, —3. При­своим описанным уровням новые баллы — соответственно 3, 2, 1. В итоге имеем следующее соотношение оценок (табл. 33).

Это распределение характеризуется ошибкой çDç=0,43 балла, т. е. уже меньше 0,5 градации, и потому такая шкала устойчива.

В общем случае возможны два варианта соотношения исходных оценок: 1) классы неразличимости оценок неё пересекаются (например, как это было в только что рассмотренном случае);

 

 

2) классы неразличимости оценок пересекаются например так:

 

 



 

 

В первом случае можно подобрать для шкалы числовую серию, т. е. упорядоченный ряд чисел, в котором большее число характе­ризует более высокий уровень качества.

Во втором случае имеется полуупорядоченная система оценок, и ее можно отобразить лишь на полуупорядоченную числовую си­стему. В рассматриваемом примере возможно, в частности, такое числовое представление:

Там, где между исходными оценками нет существенного раз­личия, разница между значениями числового представления (ниж­ний ряд чисел) меньше 1; при значимом различии разница боль­ше 1.

Однако часто желательно иметь преобразованные оценки, вы­раженные целыми числами. В таком случае можно предложить следующую систему понижения дробности шкалы: ближайшим исходным значениям, существенно отличающимся друг от друга, присваивают ранги последовательно I, II, III и, т. д. В рассматриваемом примере будет выглядеть так:



 

Для промежуточных значений, несущественно отличающихся от соседних (например, исходную оценку «2» можно отнести в любые классы — и в I, и во II), следует предложить дополнительные кри­терии отнесения их в один из двух соседних классов. Можно в качестве критерия использовать меру относительной близости про­межуточной оценки к тому или иному соседнему классу и путем перебора всех возможных схем объединения искать схему с наименьшей ошибкой.

В конечном итоге порядок действия может быть таким. На ос­нове данных двух последовательных проб определяем пороги различаемости градаций шкалы, В том случае, если обнаружено смешение градаций, применяют один из двух способов.

Первый способ, и итоговом варианте уменьшают дробность шкалы (например, из шкалы в 7 интервалов переходят на шкалу в 3 интервала).

Второй способ. Для предъявления респонденту сохраняют прежнюю дробность шкалы и только при обработке укрупняют соот­ветствующие ее пункты (как это было показано выше).

Второй способ кажется предпочтительнее, поскольку, как пра­вило, большая дробность шкал побуждает респондента и к более активной реакции. При обработке данных информацию следует перекодировать в соответствии с проведенным анализом различи­тельной способности исходной' шкалы.

Итак, предложенные способы анализа целесообразны при отра­ботке окончательного варианта методики. Анализ устойчивости отдельных вопросов шкалы позволяет; а) выявить плохо сформулиро­ванные вопросы, их неадекватное понимание разными респондентами; б) уточнить интерпретацию шкалы» предложенной для оценки того или иного явления, выявить более оптимальный вариант дроб­ности значения шкалы.

Изучение устойчивости окончательного варианта методики даст представление о надежности данных (связанной устойчивостью), которые будут получены в основном исследовании.

Обоснованность измерения.

Проверка обоснованности шкалы предпринимается лишь после того, как установлены достаточные правильность и устойчивость измерения исходных данных. Как уже отмечалось, проверка обоснованности — достаточно сложный про­цесс я, как правило, не до конца разрешимый, И поэтому нецелесообразно сначала применять трудоемкую технику для выявления обоснованности, а после- Этого убеждаться в неприемлемости дан­ных вследствие их низкой устойчивости.

Обоснованность данных измерения — это доказательство соответ­ствия между тем, что измерено, и тем, что должно было быть измерено. Некоторые исследователи предпочитают исходить из так называемой наличной обоснованности, т. е. обоснованности в понятиях использованной процедуры. Например, считают, что удовлет­воренность работой— это то свойство, которое содержится в /от­ветах -на вопрос: «Удовлетворены ли Вы работой?» В серьезном социологическом исследовании, имеющем целью проверку некоторые теоретических гипотез, такой сугубо эмпирический подход не­приемлем.

Остановимся на возможных формальных подходах к выяснению уровня обоснованности методики. Их можно разделить на три группы: 1) конструирование, типологии в соответствии с целями иссле­дования на базе нескольких признаков; 2) использование парал­лельных данных; 3) судейские процедуры.

Первый вариант нельзя считать формальным методом — это все­го лишь некоторая схематизация логических рассуждений, начало процедуры обоснования, которая может быть на этом и закончена, а может быть подкреплена более мощными средствами.

Второй вариант требует использования по крайней мере двух источников для выявления одного и того же свойства. Обоснованность определяется степенью согласованности соответствующих данных.

В последнем случае мы полагаемся на компетентность судей, которым предлагается определить, измеряем > ли мы нужное Вам свойство или что-то иное.

Рассмотрим предложенные варианты последовательно. Конструированная типологиях Один из способов —использова­ние контрольных вопросов, которые _в совокупности- с основными дают большее приближение к содержанию изучаемого свойства, раскрывая различные его стороны.

Например, можно определять удовлетворенность работой лобо­вым вопросом: «Устраивает ли вас Ваша нынешняя работа?» Комбинация его с двумя другими косвенными: «Хотите ли Вы перейти на другую работу?» и «Предположим, что Вы по каким-то причинам временно не работаете. Вернулись бы Вы на свое прежнее месте работы?» позволяет произвести более надежную дифферен­циацию респондентов. Типология по пяти упорядоченным группам от наиболее удовлетворенных работой до наименее удовлетворенных проводится с помощью «логического квадрата.

Обоснованность в подобного рода типологии не доказывается каким-либо формальным критерием и опирается на логические доводы.

Единственное требование, которое может быть выдвинуто при конструировании такого рода типологии,— это положительная кор­реляция между составляющими ее признаками. Отсутствие положительной взаимосвязи между вопросами может свидетельствовать о том, что мы не понижаем сущности измеряемого явления.

Так, попытка построить типологию самостоятельности инженера в работе на базе двух вопросов — сложность получаемых инже­нером заданий (плюс за сложность) и обращение его за консуль­тациями (плюс за самостоятельное решение) — оказалась неудач­ной, ибо вопросы коррелировали отрицательным образом и как раз сложность задания предполагала обращение к консультациям.

Параллельные данные. Нередко целесообразно разработать два равноправных приема измерения заданного признака, что позволяет установить обоснованность методов относительно друг друга, т.е. повысить общую обоснованность путем сопоставления двух неза­висимых результатов.

Классифицируем параллельные процедуры в зависимости от соотношения методов и исполнителей: а) несколько методов — один исполнитель. б) один метод — несколько исполнителей; в) несколь­ко методов — несколько исполнителей.

Несколько методов — один исполнитель. Здесь один и тот же исполнитель использует два или более различных метода для изме­рения одного и того же свойства.

Рассмотрим различные способы использования этого метода, и прежде всего — эквивалентные шкалы. Понятие эквивалентности тесно связано здесь с психологическим явлением социальной установки. Всевозможные акты поведения, обусловленные некоторой установкой, или состояние (Предрасположенности к определенному поведений: составляют целостность (универсум) данной предрасположенности. Универсум можно описать совокупностью признаков.

Возможны равнозначные выборки признаков для описания — измерения социальной установки. Эти выборки и образуют парал­лельные шкалы, обеспечивая параллельную надежность.

Каждую шкалу рассматриваем как способ измерения некоторого свойства в зависимости от числа параллельных шкал имеем ряд способов измерения. В качестве исполнителя выступает респондент, дающий ответы одновременно по всем параллельным шкалам. Все ответы сортируем в зависимости от принадлежности ki шкале и та­ким образом получаем параллельные данные.

При обработке такого рода данных следует выяснить два момента: 1) непротиворечивость пунктов отдельной шкалы; 2) согласо­ванность оценок по разным шкалам.

Первая проблема возникает в связи о тем, что модели ответов не представляют идеальной картины: ответы нередко, противоречат ДРУГ другу, Такая противоречивость свойственна как кумулятивным, так я некумулятивным шкалам. Поэтому встает вопрос, что принимать за истинное значение оценки респондента на данной шкале.

Вторая проблема непосредственно касается сопоставления па­раллельных данных,

Рассмотрим пример неудавшейся попытки повысить надежность измерения признака «удовлетворенность инженера профессией» с помощью трех параллельных порядковых шкал. Приведем две из них:



 

 

15 суждений (в порядке, обозначенном слева) предъявляются респонденту общим списком, и он должен выразить свое согласие или несогласие с каждым из них. Каждому суждению присваива­ется оценка, соответствующая его рангу в указанной шкале (спра­ва). (Например, согласие с суждением 4 дает оценку «1», согласие с суждением 11 —оценку «5» и т. д.).

Рассматриваемый здесь способ предъявления суждений списком дает возможность проанализировать пункты шкалы на непротиво­речивость. При использовании упорядоченных номинальных шкал обычно считается, что пункты, образующие шкалу, взаимно исклю­чают друг друга и респондент легко, найдет тот из них, который ему подходит.

Изучение распределений ответов показывает, что респонденты выражают согласие с противоречивыми (с точки зрения исходной гипотезы) суждениями. Например, по шкале «S» 42 человека из 100 одновременно согласились с суждениями 13 и 12, т. е. с двумя противоположными суждениями.

Наличие в ответе противоречивых суждений приводит к необходимости вычислять ошибку противоречивости. Это будет разница в рангах, наиболее противоположных для данной шкалы суждений в ответе респондента.

Итак, средние ошибки, характеризующие противоречивость для рассматриваемых шкал, оказались равными

Dа=0,37; Db=1,57

Ошибка в 1,57 балла при пятибалльной оценке, видимо, слишком велика, чтобы считать шкалу приемлемой.

Для эквивалентных шкал итоговая оценка респондента рассчи­тывается как суммарная (или усредненная) оценка по разным шка­лам. Однако для правомерности такой процедуры необходимо уста­новить соответствие оценок респондента по всем рассматриваемым шкалам.

В вышеприведенном примере такого соответствия не наблюда­лось, что сказалось на коэффициенте корреляции r= -0,02.

Поиск эквивалентной процедуры для повышения надежности шкалы весьма утомительная и кропотливая операция. Поэтому данный прием можно рекомендовать лишь при разработке ответ­ственных психологических тестов или методик, предназначенных для массового употребления или панельных исследований.

Один метод — несколько исполнителей. Если метод надежен, то разные исполнители дадут совпадающую информацию, но если Их результаты плохо согласуются, то либо измерения ненадежны, ли­бо результаты отдельных исполнителей нельзя считать равноцен­ными. В последнем случае надо установить, нельзя ли считать ка­кую-либо группу результатов заслуживающей большего доверия. Решение этой задачи тем более важно, если предполагается, что одинаково допустимо получение информации любым из рассматри­ваемых методов (например, использование самооценок против оце­нок). Анализ параллельных данных с помощью описанных ниже процедур позволит установить правильность такого предположения.

Для количественных признаков при решении вопроса о согласо­ванности оценок нескольких исполнителей предлагается выявить ошибки соответствия одним из приемов, рассмотренных при изуче­нии устойчивости. Прежде всего, поскольку мы имеем здесь слу­чай прямых групповых наблюдений, наиболее адекватной оценкой совпадения данных является средняя квадратическая ошибка.

Пусть каждый раз измерение производят два человека, и респонденту приписывается значение в виде средней (х) из двух ис­ходных. Оценку точности такого измерения следует производить по формуле

Пример.Двое судей оценивают опытность инженера в работе по семибальной шкале. Предположим, что 13 респондентов получили такие оценки:

Итак, средняя ошибка при таком способе оценивания респондента составляет почти 1 балл. В том случае, если число измерений каждого объекта равно 3, формула для расчета ошибки будет

где n – число респондентов (объектов).

 



 

s2i – дисперсия оценок i-го респондента.

Допустим, что рассмотренную выше совокупность из 13 респон­дентов оценивают не двое, а трое судей, т. е. добавляется еще одна строчка данных и следующие расчеты:

 

 

Как видно, оценивание с помощью трех лиц значительно надеж­нее, чем с помощью двух (соответствующие ошибки 0,69 и 0,97).

Обоснование измеряемого свойства путем определения уровня согласованности нескольких шифровальщиков — классический при­ем, используемый в контент-анализе документов. Этот метод, вы­явления надежности особенно необходим здесь, ибо, как правило, анализируемый документ не имеет в тексте четких границ измеря­емого признака, референты которого расплывчаты и толкуются неоднозначно, самые детальные инструкции по шифровке все же не дают исчерпывающих указаний.

Тем же способом можно изучать совпадения оценок и самооце­нок. Если согласованность оценок со стороны «судей» и соответ­ствующих самооценок респондентов будет достаточно высокой, это может означать, что методика достаточно обоснованна. Во всяком случае, одновременное использование оценок и самооценок дает возможность глубже понять сущность измеряемых признаков, уточнить их смысл.

Несколько методов и, несколько исполнителей. Одним из спосо­бов установления обоснованности измерения некоторого качества у одного и того же респондента (объекта) .является фиксирование данного свойства разными исполнителями, владеющими разными .методами. Как и предыдущих случаях, здесь нельзя установить некую абсолютную, обоснованность, поэтому рассматривается лишь, обоснованность одного способа относительно другого.

Такая ситуация наблюдает, например, в случае, если руководитель ранжирует своих подчиненных по какому-то качеству а ис­следователь ранжирует этих же людей на основании их опроса по специально разработанной методике. Скорее всего надежность пер­вого способа ранжирования значительно выше, и обоснованность второго метода следует проверять по его согласованности с первым.

Используя параллельные методы измерения одного и того же свойства, исследователь сталкивается с целым рядом трудностей.

Во-первых, неясно, в какой мере оба метода измеряют одно и то же качество объекта, причем, как правило, формальных крите­риев для проверки такой гипотезы не существует. Следовательно, необходимо прибегнуть к содержательному (логико-теоретическому) обоснованию того или иного метода.

Во-вторых, если обнаруживается, что параллельные процедуры измеряют общее свойство (данные существенно не различаются), остается вопрос о теоретико-содержательном соответствии этих процедур, .

Нельзя не признать, что сам принцип использования парал­лельных процедур оказывается, не формальным, а скорее содержа­тельным принципом, и решение остается за теоретико-методологи­ческой концепцией исследования.

Именно теоретическая позиция исследователя, теоретическая обоснованность метода измерения оказываются решающими фак­торами при решении вопроса о предпочтительности той или иной процедуры. Такое заключение необходимо сделать по отношению к параллельным процедурам, когда ни одна из них не обладает большей достоверностью по сравнению с другой.

Метод судейства при обосновании процедур измерения. Один из широко распространенных подходов к установлению обоснован­ности — это использование так называемых судей. Исследователи обращаются к определенной группе людей с просьбой выступить в качестве судей или компетентных лиц. Им предлагают набор признаков, предназначенный для измерения изучаемого явления, и просят оценить правильность отнесения каждого из признаков к этому объекту. Совместная обработка мнений судей позволит присвоить признакам веса или, что то же самое, шкальные оценки в измерении изучаемого явления. В качестве набора признаков мо­жет выступить список отдельных суждений, серия предметов, со­вокупность обследуемых лиц и т. д.

Процедуры судейства многообразны. Способ выявления отноше­ния признаков к измеряемому свойству определяет сущность ме­тода. Это могут быть методы парных сравнений, ранжирования, последовательных интервалов и т. д. В каждом случае, выбирая ту или иную технику судейства, необходимо учитывать ее специ­фические возможности, влияющие на уровень обоснования судей­ских оценок.

Вопрос о том, кого следует считать судьями, достаточно дискуссионен. Судьи, выбираемые в качестве представителей изучаемой совокупности так или иначе должны представлять ее микромо­дель: по оценкам судей исследователь определяет, насколько адек­ватно будут истолкованы респондентами пункты опросной процеду­ры или другие обращенные к респонденту стимулы.

Однако при отборе судей возникает трудноразрешимый вопрос, каково влияние собственных установок судей на их оценки, ведь эти установки Могут существенно отличаться от установок обследу­емых в отношении того же самого объекта.

Ясно, что в каждом конкретном случае следует осуществлять контроль такого рода ошибок применительно к данной выборке судей.

Так, используя мужчин и женщин в качестве судей для оценки потенциальных творческих возможностей различных занятий на досуге, нашли, что установки судей-мужчин существенно отлича­ются от установок судей-женщин. Более того, их установки зави­сят от того, увлекается ли сам судящий данным видом досуга. На­пример, женщины, которые занимаются рукоделием, значительно выше оценивают творческие возможности этого занятия, чем те, которые им не занимаются.

В общем виде решение, проблемы состоит в том, чтобы: а) вни­мательно проанализировать состав судей с точки зрения адекват­ности их жизненного опыта и признаков социального статуса соответствующим показателям обследуемой генеральной совокупно­сти; б) выявить эффект индивидуальных уклонений в оценках судей относительно общего распределения оценок. Наконец, следу­ет оценить не только качество, но и объем выборочной совокупно­сти судей. Здесь также нет единодушия между специалистами. Рекомендуется брать то 25—30 человек, то 200—300 и более. Серьезных обоснований в обоих случаях не приводится.

Рассмотрим эту проблему на языке измерения. Поскольку судьи должны измерить некоторое свойство, которое содержится в данном признаке, процедуру судейства можно понимать таким обра­зом: каждый судья i (1 = 1, 2, ..., N), измеряя одно и то же свой­ство, дает признаку некоторую оценку х и помещает его в неко­торый класс значений. Имея оценки N судей, получаем N измере­ний одного и того же признака. Если признаков k, то имеем Nk измерений. Количество судей надо поставить в прямую зависимость от вариаций их мнений и, таким образом, от однозначности изме­ряемого объекта.

С одной стороны, это количество определяется согласованностью: если согласованность мнений судей достаточно высокая и соответ­ственно ошибка измерения мала, численность судей может быть небольшой. Нужно задать значение допустимой ошибки и на ос­новании ее рассчитать требуемый объем выборки.

При обнаружении полной неопределенности объекта, т. е. в слу­чае, когда мнения судей распределятся равномерно по всем кате­гориям оценки, никакое увеличение объема выборки судей не спа­сет ситуацию и не выведет объект из состояния неопределенности.

С другой стороны, количество измерений и соответственно чис­ло судей должны быть целесообразными. Очевидно, что 1000 судей дадут более надежные данные, но разумнее ограничиться мень­шим количеством, особенно если требования к точности измерения являются не слишком высокими.

Здесь возникает проблема точности (устойчивости) измерения. Рассмотрим с этой точки зрения принципиально разные варианты судейства:

1) производится классификация состояний объекта (сам объект имеет качественные градации);

2) находится количественная оценка изменяющихся состояний объекта, представляющих собой континуум.

В первом случае при определении объема выборки судей необходимо задать некоторый уровень определенности в их мнениях, т. е. энтропия распределения оценок должна быть не выше некоторого порогового значения. Во втором задается уровень допустимой ошибки. Далее возникает вопрос о численности градаций в судей­ских оценках, что относится к чувствительности любой измеритель­ной процедуры. В общем случае речь идет не о чем ином, как о чувствительности измерения, зависящей и от изменчивости объек­та, и от устойчивости инструмента измерения. Основной способ определения дробности судейских оценок — выявление их устойчи­вости путем двух последовательных (современным интервалом) судейств по единой процедуре. Эта операция уже рассматривалась выше в разделе об устойчивости.

Если объект достаточно не определен, то большое число града­ций только внесет дополнительные помехи в работу судей и не принесет более точной информации. Нужно выявить устойчивость судейских мнений с помощью повторной пробы и соответственно сузить число градаций.

Выбор того или иного конкретного способа, метода или техники проверки на обоснованность зависит от многих обстоятельств.

Прежде всего следует четко установить, возможны ли какие-то существенные отклонения от запланированного предмета измере­ния. Как правило, интерпретация полученных данных вследствие различных погрешностей измерения не отвечает полностью эмпи­рической интерпретации понятий или свойств, которыми, согласно гипотезе, обладает этот объект. Бели программа исследования ста­вит чрезвычайно жесткие рамки следует использовать не один, а несколько приемов проверки данных на обоснованность, с тем чтобы четко определить границы достоверности заключения по ги­потезе. Если же она не столь жестко ограничивает содержание объекта, уточнение уровня обоснованности поможет интерпретиро­вать данные в несколько иных направлениях в соответствии с ре­зультатами проверки на обоснованность исходного измерения.

Во-вторых, нужно иметь в виду, что уровни устойчивости и обоснованности данных тесно взаимосвязаны. Неустойчивая инфор­мация уже в силу недостаточной надежности при этому критерию не требует, слишком строгой проверки на обоснованность. Следует обеспечить достаточную устойчивость и уже затем принять соот­ветствующие меры для уточнения границ интерпретации данных

Наконец, надо сказать, что для оперативных Исследований, про­грамма которых разработана лишь в общем виде: (т. е, имеется скорее общий набросок логики исследования, общий замысел), мож­но ограничиться проверкой данных на устойчивость, используя эту информацию. Для некоторых, хотя бы гипотетических, суждений относительно обоснованности.

Выбор конкретной Техники проверки данных на обоснован­ность— задача скорее содержательная, чем формальная. Мы пока­зали, как решается эта задача в зависимости от особенностей методики, подлежащей проверке на обоснованность, того места, которое она занимает в рамках всего исследования, и, главное, в соответствии со спецификой объекта измерения.

Многочисленные эксперименты по выявлению уровня надежно­сти исходной информации, в частности рассмотренные в этой гла­ве, позволяют заключить, что в процессе отработки инструментов измерения со стороны их надежности целесообразна следующая последовательность основных этапов работы:

1. Предварительный контроль обоснованности методов измере­ния первичных, данных на стадии проб методики. Здесь проверяется, насколько - информация отвечает своему назначению по суще­ству и каковы пределы последующей интерпретации данных. Для этой цели достаточны небольшие выборки в 10-20 наблюдений с последующей корректировкой структуры методики.

2. Пилотаж методики и тщательная проверка устойчивости ис­ходных данных, в особенности итоговых показателей, индексов, мно­гомерных шкал и т. п. На этом этапе нужна выборка не менее 100 человек, представляющая микромодель реальной совокупности об­следуемых с учетом представительства по существенным характе­ристикам объекта исследования.

3. В период общего пилотажа осуществляются все необходимые операции, относящиеся к проверке, уровня обоснованности. Резуль­таты анализа данных генерального пилотажа приводят к усовер­шенствованию методики, к доработке всех ее деталей и в итоге — к- получению окончательного варианта методики для основного исследования.

4. В начале основного исследования желательно провести проверку используемого варианта методики на устойчивость с тем, чтобы рассчитать точные показатели ее устойчивости. Доследую­щее уточнение границ обоснованности проходит через весь анализ самого исследования.

 

Литература для дополнительного чтения

Аванесов В. С. Тесты в социологическом исследовании. М.: Наука, 1982. 199 с.

Бородкин Ф. М., Маркин Б. Г. Эмпирические, описания в социологии.— В кн.: Математика и социология. Новосибирск: Наука. Сиб. отд-ние, 1972, с. 3—41

Воронов Ю. П., Ершова Н. П. Общие принципы социологического измерения.— В кн.: Намерение и моделирование в социологии. Новосибирск: Наука. Сиб. отд-ние, 1969, с. 3—15.

Грин Ф. Б. Измерение установки.— В кн.: Математические методы в. современной буржуазной социологии. М.: Прогресс, 1966, с. 227—287.

Докторов Б. 3. О надежности измерения в социологическом исследовании. Л.: Наука, 1979. 128 с.

Жуков Ю. М. Применение шкалирования в социально-психологических иссле­дованиях.— В кн.: Методология и методы социальной психологии. М.: Наука, 1977, с. 126—135.

Зайцева М. Л. Методы шкалирования при измерении установки.— В кн.: Со­циальные исследования. М.: Наука, 1970, вып. 5, с. 220—242.

Клигер С. А., Косолапое М. С., Толстова Ю. И. Шкалирование при сборе и анализе социологической информации. М.: Наука, 1978. 112 с.

Лазарсфельд П. Ф. Измерение в социологии.— В кн.: Американская социоло­гия: Перспективы, проблемы, методы. М.: Прогресс, 1972, с. 134—149.

Осипов Г. В.. Андреев Э. П. Методы измерения в социологии. М.: Наука, 1977. 183 с.

Процесс социального исследования. Прогресс. 1975, разд. 1,4,2. Саганенко Г. И. социологическая информация: Статистическая оценка надеж­ности исходных данных социологического исследования. Л.: Наука, 1979. 142с.

Статистическое измерение качественных характеристик. М.: Статистика, 1972. . 173 с.

Суппес П. Зинес Дж. Основы теории измерений.— В кн.: Психологические из­мерения. М.: Мир, 1967, с. 9—110.

 

Раздел третий