Свойства углеродных волокон

Свойства углепластиков зависят от свойств углеродных во­локон, которые в свою очередь определяются условиями пиролиза органических волокон (гидратцеллюлозных, полиакрилонитрильных, волокон из мезофазных пеков), используемых в настоящее время в каче­стве сырья для изготовления углеродных волокон.

Механические свойства. Модуль упругости при растяжении (вдоль волокон) высококачественных углеродных волокон высокопрочного типа (на основе ПАН) составляет 200 -- 250 ГПа, высокомодульного типа (на основе ПАН) - около 400 ГПа, а углеродных волокон на основе жидкокристаллических пеков: 400 - 700 ГПа. При одной и той же температуре прогрева углеродные волокна на основе жидкокристал­лических пеков имеют больший модуль упругости при растяжении, чем волокна на основе ПАН [2]. Модуль упругости при растяжении поперек волокон (модуль жест­кости при изгибе) снижается с ростом модуля упругости при растяжении вдоль волокон. Для углеродных волокон на основе ПАН он выше, чем для волокон на основе жидкокристаллических пеков. На поперечный модуль упругости также влияет ориентация атомных плоскостей в сечении уг­леродного волокна. Проч­ность при растяжении вдоль оси высокопрочных углеродных волокон на основе ПАН составляет 3,0-3,5 ГПа, волокон с высоким удлинением ~ 4,5 ГПа и высокомодульных волокон - 2,0-2,5 ГПа. Высокотемпера­турная обработка волокон второго типа позволяет получить высокомо­дульные волокна с прочностью при растяжении приблизительно 3 ГПа. Прочность волокон на основе жидкокристаллических пеков обычно равна 2,0 ГПа. Теоретическое значение прочности при растяжении кристаллов гра­фита в направлении атомных плоскостей решетки составляет 180 ГПа. Измерен­ная экспериментально прочность при растяжении углеродных волокон вы­сокопрочного и высокомодульного типа на основе ПАН на участке дли­ной 0,1 мм равна 9-10 ГПа.. Эта величина составляет 1/20 теоре­тического значения и 1/2 прочности нитевидных монокристаллов гра­фита. Для углеродных волокон на основе жидкокристаллических пеков измеренная аналогичным образом прочность равна 7 ГПа. В таблицах 17.1, 17.2 приведены показатели механических свойств наиболее распространенных углеродных во­локон [2, 12].

Мень­шая прочность промышленно производимых углеродных волокон связана с тем, что они не являются монокристаллами и в их микроско­пической структуре имеют место значительные отклонения от регуляр­ности. Свойства углеродных волокон можно значительно улучшить вплоть до разрушающего удлинения 2% и прочности 5 ГПа и выше [2].

 

Таблица 17.1 - Механические свойства УВ [2].

 

Характеристика УВ на основе ПАН УВ на основе жидкокри­стал­лических пеков
высоко­прочное с высоким удлинением высоко­модульное
Диаметр волокна, нм (7-8) 103 (6-7) 103 (6-7) 103 1 105
Модуль упругости при растяжении, ГПа 230-240 230-250 350-450 380-690
Разрушающее напряже­ние при растяжении, ГПа 3,0-3,5   4,0-4,5   2,0-2,5   2,1-2,4  
Относительное удлине­ние при растяжении, % 1,3-1,4 1,7-1,8 0,5-0,6  
Плотность, г/см3 1,74-1,78 1,74-1,78 1,78-1,84 2,00
Удельная прочность, м 173-196 230-252 112-136 105-120

 

 

Таблица 17.2 - Физико-механические свойства углеродных волокон [12].

 

Исходное волокно Диаметр, мкм Плотность, г/см3 Разрушающее напряжение при растяжении, МПа Модуль упругости при растяжении, Е, ГПа Тестильная форма
Полиакрилонитрильное 7-8 1,95-2,0 1,75-1,8 1400-2100 2500-3100 380-450 250-310 Непрерыв-ный жгут
Визкозное   8-10 1,32 400-800 Непрерывный жгут
  6-8 1,43 1,56 1,63-1,7 1,86 1260-1400 2000-2200 2300-2600 350-420 490-530

 

Как видно из таблиц, УВ обладают низкой плотностью и высокими прочностью при растяжении и модулем упругости. Следовательно, углеродные волокна имеют высо­кую прочность и удельный модуль упругости. Наиболее характерной осо­бенностью углеродных волокон является их высокий удельный модуль упругости. Это позволяет с успехом использовать углеродные волокна для армирования материалов конструкционного назначения. Сравнивая высокомодульные волокна с низкомо­дульными сходного химического состава, следует от­метить, что с увеличением модуля упругости и плотности углеродных во­локон уменьшаются объем закрытых пор, средний диаметр и удельная поверхность, улучшается его электропроводность.

Электрические свойства.Возрастание модуля упругости по мере уменьшения угла тек­стуры означает, что структура углеродного волокна приближает­ся к структуре графита, обладающего металлической проводимо­стью в направлении гексагонального слоя [1]. Углеродные во­локна, полу­ченные при температуре не ниже 1000°С, обладают высокой элект­ропроводностью (более 102 Ом-1-см-1). Варьируя модуль упругости, а следовательно, и элект­рические свойства углеродного наполнителя, можно регулировать электрические свойства композиционного материала. В процессе превращения органических волокон в УВ осуществляется пе­реход через все зоны проводимости [5]. Исходные волокна являются диэлектри­ками, в процессе карбонизации электрическое сопротивление резко снижается, затем с повышением температуры обработки выше 1000 оС оно, хотя и продолжает умень­шаться, но менее интенсивно [2]. Карбонизованные волокна по типу проводимости относятся к полупроводникам, а графитированные охватывают область от по­лупроводников до проводников, приближаясь по мере повышения температуры обработки к последним. Для углеродных волокон температурная зависимость проводимости определяется конечной температурой их обработки, а следова­тельно, концентрацией электронов и размерами кристаллитов.

Следует отметить [1], что чем выше температура карбонизации, тем меньше температурный коэффициент электропроводности. Углеродные волокна обладают дырочной и электронной проводимостью. При повышении температурной обработки, сопровождающейся совершенствованием струк­туры и увеличением числа электронов, запретная зона проводи­мости уменьшается, поэтому возрастает электропроводность, которая для волокон, обработанных при высокой температуре, по абсолютно­му значению приближается к электропроводности проводников.

Термические свойства. Одним из проявлений особенностей анизотропной структуры высокомодульных углеродных во­локон является отрицательный коэффициент термического линейного расширения вдоль оси волокна, по­вышающий уровень остаточных напряжений в высокомодульных волокнитах [12]. У волокна с большим модулем упругости коэффици­ент выше по абсолютной величине и в более широком интервале температур имеет отрицательное значение. Так, у углеродных во­локон, изготовленных из ПАН-волокна (рисунок 17.11), максимальное (по аб­солютной величине) значение коэффициента наблюдается при 0°С, а при повышении температуры его знак меняется на обрат­ный (при температуре выше 360°С у волокна с Е = 380 ГПа и выше 220 °С у волокна с Е = 280 ГПа. Следует отме­тить, что кривая на рисунке 3.11 хорошо совпадает с аналогичной зависимостью коэффициента термического расширения решетки пиролитического графита вдоль оси а.

Благодаря высокой энергии связи С—С углеродного во­локна оста­ются в твердом состоянии при очень высоких температурах, при­давая композиционному материалу высокую температуростойкость. Кратковременная прочность при растяжении высокомодуль­ного волокна, содержащего 99,7 вес. % углерода, остается практи­чески неизменной в нейтральной и восстановительной средах до 2200 °С. Не изменяется она и при низких температу­рах . В окислительной среде прочность углеродного во­локна сохраняет­ся неизменной до 450°С. Поверхность волокна предохраняют от окисления кислородостойкими защитными покрытиями из туго­плавких соединении или термостойких связующих; наибольшее распространение получили пиролитические покрытия .

Рисунок 17.11 - Зависимость коэффициента термического линейного расширения

вдоль волокна для углеродных во­локон с модулем упругости 380 (1)

и 280 ГПа (2) от температуры.[12].

Химические свойства. Углеродные во­локна отличаются от других наполнителей химической инертностью [12]. Химическая стойкость углеродных во­локон зависит от температу­ры конечной обработки, структуры и поверхности волокна, типа и чистоты ис­ходного сырья. После выдержки в течение 257 суток в агрессивных жидкостях высокомодульных волокон, полученных из ПАН-волокна, при комнатной температуре заметное снижение прочности при растяжении наблюдается лишь при действии ортофосфорной, азотной и серной кислот (таблица 17.3).

 

Таблица 17.3 - Химическая стойкость в агрессивных средах высокомодульного УВ на основе ПАН (продолжительность воздействия 257 суток) [5].

Реагенты Температу­ра, °С Диаметр волокна, нм σр, МПа Ер, ГПа
Контрольный образец волокна - 6,2
Кислота (50 %-ная):        
Соляная 5,9
Серная 6,3
Азотная 6,8
Угольная 6,1
Ортофосфорная 6,5
Уксусная ледяная - 6,1
Раствор гидрооксида натрия, 50 %-ный 6,5

 

Модуль упругости образцов изменяется только под влиянием 50%-ного раствора азотной кислоты. Проч­ность стеклянного волокна щелочного состава после выдержки в течение 240 ч в 5%-ных растворах серной или азотной кислот уменьшается на 41 и 39 % соответственно. При повышении тем­пературы стойкость углеродного волокна к агрессивным средам уменьшается.

Особенно легко оно окисляется в растворах азотной кислоты. Раствор гидрохлори­да натрия окисляет углерод, вследствие чего уменьшается диаметр волокна, а его механические свойства даже несколько улучшаются [1].

По степени активности по отношению к высокомодуль­ному углеродному во­локну, полученному из ПАН-волокна, кислоты мож­но расположить в следующий ряд: НNО32S04зР04>НС1. Уксусная и муравьиная кислоты и растворы щелочей любых концентраций и при любой температуре не разрушают углеродные волокна [12]. Химическая стойкость углеродных во­локон обеспечивает стабильность свойств композици­онных материалов на их основе [5].

Дефекты и смачивание. Пиролиз органических волокон сопровождается увеличением их пористости [4]. Высокомодульные углеродные во­локна имеют поры вытяну­той формы, отличаются от низкомодульных ориентацией бороздок и трещин вдоль оси волокна и их меньшей концентрацией на по­верхности. По-видимому [12], при вытяжке происходит сглаживание части поверхностных дефектов, особенно эффективное при высо­котемпературной обработке волокон. Поры на поверхности углеродных во­локон имеют разные размеры. Крупные поры диаметром несколько сотен ангстрем при формовании композиционного мате­риала заполняются связующим, при этом прочность сцепления свя­зующего с наполнителем повышается. Большая часть пор на по­верхности волокон имеет диаметр несколько десятков ангстрем. В столь малые полости могут проникать только низкомолекуляр­ные компоненты связующего, и у поверхности наполнителя проис­ходит молекулярно-ситовое перераспределение связующего, изме­няющее его состав.

Смачиваемость волокон применяемыми для получения углепластиков, связующими, оказывает большое влияние на их свойства. В отличие от стеклянных волокон поверхностная энергия углеродных во­локон очень низка, поэтому волокна плохо смачиваются связующими, а углепластики характеризуются низкой прочностью сцепления между наполнителем и связующим. Прочность сцепления волокон со связующим возрастает, если на поверхность волокон предварительно наносят тонкий слой мономера, хорошо смачивающего ее и заполняющего все поры. В результате полимеризации мономера волокно покрывается тонким слоем полимера — протектора, “пломбирующего” его поверхностные дефекты. Затем наполнитель совмещают с выбранным связующим, формуют изделие и отверждают пластик по стандартному режиму.

В настоящее время предложено еще несколько способов повышения прочности сцепления углеродного во­локна со связующим, эффективность которых оценивают по возрастанию прочности композиционного материала при сдвиге [4]:

- снятие пленки замасливателя с поверхности углеродных во­локон после окончания текстильной переработки;

- травление поверхности углеродных во­локон окислителями;

- аппретирование углеродных во­локон;

- выращивание на поверхности волокон нитевидных кристаллов, обладающих высоким сопротивлением срезу (ворсеризация или вискеризация).

В некоторых случаях применяют последовательно несколько способов обработки.

Ворсеризация высокомодульных углеродных волокон является наиболее радикальным методом повышения прочности при сдвиге углепластиков. Пропорционально объемному со­держанию нитевидных кристаллов на волокне увеличивается не только прочность при сдвиге, но и прочность при сжатии и изгибе в поперечном направлении вследствие дополнительного упрочнения матрицы кристаллами, обладающими вы­сокими механическими показателями (например, прочность ните­видных кристаллов ?-SiC составляет 7—20 ГПа при мо­дуле упругости около 50 ГПа). При высоком содержании нитевидных кристаллов на волокне (более 4—7%) прочностные и упругие свойства пластика ухудшаются. В ряде случаев снижение прочности пластика связано с потерей прочности углеродного волокна при ворсеризации. В таблице 17.4 показано, как зависят свойства углепластиков от способа подготовки поверхности углеродного волокна.

 

Таблица 17.4 - Влияние различных видов подготовки поверхности высокомодульного волокна на свойства однонаправленного эпоксидного углепластика [12].

 

Способ подготовки поверхности углеродных волокон Плотность, г/см3 Разрушающее напряжение, МПа, при Модуль упругости, ГПа
    сдвиге изгибе  
Волокно с замасливателем 1,44
Травление в HNO3 1,45
Выжигание замасливателя в азоте и пропитка эпоксидной смолой   1,45      
Ворсеризация нитевидными кристаллами карбида кремния   1,46      

Способность углеродных во­локон, содержащих одинаковое количество углерода (не менее 99 вес.%), к ворсеризации из газовой фазы возрастает с уменьшением стойкости его к окислению, которая пропорциональна концентрации поверхностных дефектов [12].

Физические свойства углеродных волокон зависят от их предыстории (условий карбонизации и графитации ), а некоторые пока­затели и от природы и качества сырья [1]. Многие свойства углерод­ных волокон определяется конечной температурой обработки, но, кроме этого, существенный вклад могут вносить другие факторы. В таблице 17.5 приведены наиболее характерные физические свойства углеродных волокон.

Плотность графита равна 2,26 г/см3, она значительно превосходит плотность углеродного волокна, что обусловлено менее совершенной структурой последнего. Среди жаростойких волокон углеродное имеет самую низкую плотность; это благоприятно сказывается на удель­ных механических показателях волокна. Графитированные волокна имеют небольшую удельную поверхность.

 

Таблица 17.5 - Физические свойства углеродных волокон [1].

 

Характеристика Волокно
карбонизованное графитированное
Плотность, кг/м3 1300-1650 1700-1900
Удельная поверхность, м2 0,3-100 0,15-3,0
Температурные коэффи­циент линейного расширения,106
Удельная теплоемкость, кДж/кг К 0,66 0,66
Теплопроводность, Вт/(м К) 0,84-20,9 83,7-125,6
Удельное электросопро­тивление, 10-5 ом м 0,17-0,42 0,25-0,33
Тангенс угла диэлектри­ческих потерь (при 1010 Гц) 0,17-0,42 0,25-0,33
Гигроскопичность, % 0,1-10 1,0

 

Удельная поверхность карбонизованных волокон в зависимости от условий их получения и типа применяемого сырья может изменяться в широких пределах.

С целью увеличения удельной поверхности 500-1000 м2/г углеродные волокна обрабатывают перегретым водяным паром, диоксидом углерода и другими реагентами. Углеродные волокна характеризуются неболь­шим коэффициентом линейного расширения, заметно меньшим, чем металлы, графит и кварцевое стекло. По теплоемкости углеродные во­локна мало отличаются от других твердых тел. Характерной особен­ностью углеродных и тем более графитированных волокон является их очень большая теплопроводность. Это свойственно также графиту. При применении углеродных волокон или композиций на их основе в качестве теплозащитных материалов высокая теплопроводность явля­ется нежелательной, так как при этом через композиционный материал, происходит интенсивная передача тепла. Для устранения этого не­достатка в композиционные материалы кроме углеродного волокна добавляют другие жаростойкие волокна, в частности, волокна из оксидов металлов с низкой теплопроводностью.

Углеродные волокна с развитой удельной поверхностью отлича­ются высокой гигроскопичностью из-за конденсации воды в порах. Графитированное волокно малопористо, поэтому гигроскопичность его низкая. Гигроскопичность имеет большое значение при изготовлении композиционных материалов.