Способ, основанный на истолковании интеграла как площади

 

Пусть подынтегральная функция неотрицательна и ограничена: , а двумерная случайная величина распределена равномерно в прямоугольнике D с основанием и высотой . Тогда двумерная плотность вероятности для точек, принадлежащих D; вне D.

В качестве оценки интеграла принимают , где n – общее число случайных точек , принадлежащих D; - число случайных точек, которые расположены под кривой .

Задача. Найти оценку интеграла .

Решение. Используем формулу .

В интервале (0,2) подынтегральная функция неотрицательна и ограничена, причём ; следовательно, можно принять c=4.

Введём в рассмотрение двумерную случайную величину (X,Y), распределённую равномерно в прямоугольнике D с основанием и высотой с=4, плотность вероятности которой .

Разыгрываем n=10 случайных точек , принадлежащих прямоугольнику D. Учитывая, что составляющая X в интервале (0,2) распределена равномерно с плотностью и составляющая Y в интервале (0,4) распределена равномерно с плотностью , разыграем координаты случайной точки , принадлежащей прямоугольнику D, по паре независимых случайных чисел : , .Отсюда , .

 

 

Номер i
0,100 0,253 0,520 0,863 0,354 0,809 0,911 0,542 0,056 0,474 0,200 0,506 1,040 1,726 0,708 1,618 1,822 1,084 0,112 0,948 0,040 0,256 1,082 2,979 0,501 2,618 3,320 1,175 0,013 0,899 3,960 3,744 2,918 1,021 3,499 1,382 0,680 2,825 3,987 3,101 0,973 0,376 ,135 0,467 0,876 0,590 0,737 0,048 0,489 0,296 3,892 1,504 0,540 1,868 3,504 2,360 2,948 0,192 1,956 1,184    

 

Если окажется, что , то точка лежит под кривой и в «счётчик » надо добавить единицу.

Результаты десяти испытаний приведены в таблице 3.

Из таблицы 3 находим . Искомая оценка интеграла

Способ «выделения главной части».

В качестве оценки интеграла принимают

,

где - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , которые разыгрывают по формуле ; функция , причём интеграл можно вычислить обычными методами.

Задача. Найти оценку интеграла .

Решение. Так как , то примем . Тогда, полагая число испытаний n=10, имеем оценку

.

Выполнив элементарные преобразования, получим

.

Учитывая, что a=0, b=1, возможные значения разыграем по формуле . Результаты вычислений приведены в таблице 4.

Номер i
0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 0,010 0,947 0,064 0,141 0,270 0,018 0,745 0,218 0,125 0,767 1,010 1,947 1,064 1,141 1,270 1,018 1,745 1,218 1,125 1,767 1,005 1,395 1,032 1,068 1,127 1,009 1,321 1,104 1,061 1,329 2,000 1,843 2,000 1,995 1,984 2,000 1,897 1,990 1,997 1,891

 

Сложив числа последнего столбца таблицы 4, найдём сумму 19,597, подставив которую в соотношение , получим искомую оценку интеграла

.

Заметим, что точное значение I=1,147.

 

 

Заключение

 

 

Метод Монте-Карло используется очень часто. Он имеет некоторые очевидные преимущества:

· Он не требует никаких предложений о регулярности, за исключением квадратичной интегрируемости. Это может быть полезным, так как часто очень сложная функция, чьи свойства регулярности трудно установить.

· Он приводит к выполнимой процедуре даже в многомерном случае, когда численное интегрирование неприменимо, например, при числе измерений, большим 10.

· Его легко применять при малых ограничениях или без предварительного анализа задачи.

Он обладает, однако, некоторыми недостатками, а именно:

· Границы ошибки не определены точно, но включают некую случайность. Это, однако, более психологическая, чем реальная, трудность.

· Статическая погрешность убывает медленно.

· Необходимость иметь случайные числа.

 

 

Литература

 

1. Бермант А.Ф., Арманович И.Г. Краткий курс математического анализа для втузов. - М., 1967г. 736 стр. с илл.

2. Будак Б.М., Фомин С.В. Кратные интегралы и ряды. - М.:Наука, 1965г. 608 стр. с илл.

3. Соболь И.М. Численные методы Монте-Карло. - М.:Наука, 1973г. 312 стр. с илл.

4. Брусленко М.П., Шрейдер Ю.А. Метод статистических испытаний (Монте-Карло) и его реализация на цифровых вычислительных машинах. - М.: ФИЗМАТГИЗ, 1961г.

5. Ермаков С.М. Метод Монте-Карло и смежные вопросы. - М.:Наука, 1975г. 472 стр. с илл.

6. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учебное пособие для студентов ВТУЗов. - 3-е изд.,перераб. И доп. - М.:Высш.школа, 1979г. 400 стр. с илл.

7. Кетков Ю.Л., Кетков А.Ю., Шульц М.М. MATLAB 7, программирование, численные методы. - СПб.:БХВ-Петербург, 2005г. 752 стр. с илл.

 

Приложение.

 

Равномерно распределённые случайные числа

 

10 09 73 25 33 76 52 01 35 86 34 67 35 48 76 80 95 90 9117

37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 61 04 02

08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64

99 01 90 25 29 09 37 67 07 15 38 31 13 11 65 88 67 67 43 97

12 80 79 99 70 80 15 73 61 47 64 03 23 66 53 98 95 11 68 77

 

66 06 57 47 17 34 07 27 68 50 36 69 73 61 70 65 81 33 98 85

31 06 01 08 05 45 57 18 24 06 35 30 34 26 14 86 79 90 74 39

85 26 97 76 02 02 05 16 56 92 68 66 57 48 18 73 05 38 52 47

63 57 33 21 35 05 32 54 70 48 90 55 35 75 48 28 46 82 87 09

73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44