Индикаторы в кислотно-основном титровании

Сущность и классификация методов кислотно-основного титрования

В основе кислотно-основного титрования положена реакция взаимодействия ионов водорода или гидроксония с гидроксид-ионами:

Н+ + ОН- = Н2О, Н3О+ + ОН- = 2Н2О

При помощи этого метода определяют кислоты, основания, соли, способных гидролизоваться в водных растворах, а также их смеси, азот, серу в органических соединениях, некоторые органические соединения (формальдегид, спирты и др.).

В качестве титрантов в кислотно-основном титровании применяют в основном растворы сильных кислот (НС1, Н2SО4) и сильных оснований (КОН, NaOH).

В зависимости от природы титранта кислотно-основное титрование включает два основных метода: ацидиметрия и алкалиметрия. В ацидиметрии титрантом служит раствор кислоты, а применяют ее для определения различных оснований. В алкалиметрии титрант - раствор щелочи, а применяется для определения кислот,

Титранты кислотно-основного титрования относятся к титрантам второго типа - стандартизированные или с установленным титром (см.3.3). В качестве исходных веществ для установления титра рабочих растворов кислот используют тетраборат натрия (Na2B4O7*10H2O) или карбонат натрия безводный (Na2CO3), а для установления титра растворов щелочей – щавелевую (Н2С2О4*2Н2О) или янтарную (Н2С4Н4О4) кислоту.

Кислотно-основное титрование не сопровождается внешним эффектом, а лишь изменением рН. Реакция среды в точке эквивалентности определяется природой взаимодействующих кислот и оснований.

Индикаторы в кислотно-основном титровании

Индикаторы кислотно-основного титрования представляют собой слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются окраской. В процессе диссоциации эти две формы находятся в равновесии. Изменение рН в кислотно-основном титровании нарушает равновесие процесса диссоциации индикатора, что вызывает накопление в растворе одной из форм индикатора, окраску которой можно визуально наблюдать. Для каждого индикатора есть свой интервал значений рН, в пределах которого индикатор изменяет свою окраску. Этот интервал называется областью перехода окраски индикатора. Окраске индикатора, при которой заканчивают титрование, отвечает определенное значение рН, лежащее внутри области перехода, которое называют показателем титрования этого индикатора.

Важнейшие индикаторы имеют следующие области перехода и показатели титрования:

Область перехода Показатель титрования (рТ) рН рТ

Метиловый оранжевый 3,1 – 4,4 4,0

Метиловый красный 4,4 – 6,2 5,5

Лакмус 5,0 – 8,0 7,0

Фенолфталеин 8,0 – 10,0 9,0

Для правильного выбора индикатора в различных случаях титрования необходимо знать предел скачка рН на кривой титрования. Для каждого случая титрования пригодны только те индикаторы, показатели титрования которых входят в пределы скачка рН на кривой.

Предел скачка рН для случая титрования сильной кислоты сильной щелочью составляет 4 – 10. Так как рТ всех индикаторов входят в предел скачка рН, фиксирование точки эквивалентности для данного случая титрования возможно всеми вышеперечисленными индикаторами.

Предел скачка рН для случая титрования слабой кислоты сильным основанием составляет 8 – 10. В этот предел скачка рН входит только рТ индикатора фенолфталеина. Для данного случая титрования точку эквивалентности можно зафиксировать только с фенолфталеином.

Предел скачка рН для случая титрования слабого основания сильной кислотой составляет 4 – 6,2. В этот предел скачка рН входят рТ метилового оранжевого и метилового красного с помощью которых можно точно зафиксировать точку эквивалентности для данного случая титрования.

 

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Классификация методов кислотно-основного титрования»

по предмету аналитическая химия

 

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

В кислотно-основном методе титрования различают три случая титрования:

1. Титрование сильной кислоты сильной щелочью и наоборот:

НСl + NaOH = NaCl + H2O; H+ + OH- = H2O

Точка эквивалентности находится в нейтральной среде (рН=7), т.к. образующаяся соль не подвергается гидролизу.

2. Титрование слабой кислоты сильной щелочью:

СН3СООН + NaOH = CH 3COONa + H2O

В ионном виде:

СН3COOH + OH- = CH3COO- + H2O

В точке эквивалентности образуется соль слабой кислотой и сильного основания, которая вступает в реакцию гидролиза:

СH3COONa + HOH ↔ CH3COOH + NaOH

В ионном виде:

СН3СОО- + НОН ↔ СН3СООН + ОН-

В растворе накапливаются ионы ОН- и точка эквивалентности будет находиться в щелочной среде (рН > 7 ), не совпадая с точкой нейтральности.

3. Титрование слабого основания сильной кислотой:

NH4OH + HCl = NH4Cl + H2O

В ионном виде:

NH4OH + H+ = NH4+ + H2O

Образующаяся соль слабого основания и сильной кислоты (NH4Cl) подвергается гидролизу, и в растворе накапливаются ионы Н+, что вызывает смещение точки эквивалентности в кислую среду. Следовательно, и в третьем случае точка эквивалентности не совпадает с точкой нейтральности.

Поскольку кислотно-основное титрование не сопровождается внешним эффектом, например, изменением окраски, для фиксирования точки эквивалентности применяют индикаторы.

 

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Индикаторы в методе кислотно-основного титрования»

по предмету аналитическая химия

 

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

Индикаторами в методе кислотно-основного титрования служат вещества, меняющие свою окраску при изменении рН среды. Поэтому их называют кислотно-основными, или рН-индикаторами. Наиболее широко используются в анализе: метиловый оранжевый, фенолфталеин, лакмус, метиловый красный, тимолфталеин, бромтимоловый синий.

Сделать правильный выбор индикатора для титриметрического анализа можно лишь зная теорию индикаторов. Существует так называемая ионно-хромофорная теория индикаторов, объясняющая свойства таких индикаторов. Согласно ионной теории индикаторы, используемые в методе кислотно-основного титрования, – это слабые органические кислоты (или слабые органические основания), у которых недиссоциированные молекулы и образуемые ими ионы имеют различную окраску.

Индикаторы, обладающие свойством присоединять протоны, называют основными индикаторами (IndOH). Такие индикаторы диссоциируют по схеме

IndOH + H+ Ind+ + H2O (12.2.1)

Индикаторы, обладающие свойством отдавать протоны, называют кислотными индикаторами (HInd). Если упрощенно обозначить молекулы фенолфталеина через HInd, а анионы его – через Ind -, то можно записать следующее уравнение:

HInd H+ + Ind - (12.2.2)

бесцветная малиновая

Достаточно к раствору, содержащему фенолфталеин, прибавить немного щелочи, как введенные ОН--ионы станут связывать Н+-ионы с образованием малодиссоциирующих молекул Н2О. Равновесие диссоциации индикатора сместится вправо, и накопление анионов Ind - вызовет окрашивание раствора в малиновый цвет.

Наоборот, если к раствору фенолфталеина прилить несколько капель кислоты, то будет подавляться диссоциация молекул индикатора. Равновесие сместится влево, и раствор обесцветится.

Согласно хромофорной теории молекулы кислотно-основных индикаторов содержат так называемые хромофоры (носители цветности), т. е. особые группы атомов с сопряженными двойными связями и неподеленными парами электронов:

При изменении рН раствора или при диссоциации хромофоры могут перегруппировываться. Перемена окраски у индикаторов – результат изменений в их внутреннем строении. У одноцветных индикаторов это связано с появлением или исчезновением хромофоров. У двухцветных индикаторов эти изменения обусловлены превращением одних хромофоров в другие, имеющих различную окраску. Этот процесс называется таутомерией.

Переход из одной таутомерной формы в другую происходит под действием ионов Н+> и ОН-, поскольку одна из форм индикатора является слабой органической кислотой или слабым органическим основанием. На окраску индикаторов влияет также присутствие в соединениях других группировок, называемых ауксохромами. К ним относятся группы -OH, -NH2, -OCH3, -N(CH3)2 и т. д.

Ауксохромы сами не сообщают окраску индикаторам, но обладают свойством усиливать действие хромофоров, повышать интенсивность вызываемой ими окраски.

Таким образом, в растворах кислотно-основных индикаторов одновременно происходят как равновесные процессы, обусловленные диссоциацией молекул, так и равновесные процессы, связанные с внутримолекулярной группировкой.

Свойство молекул различных индикаторов диссоциировать в нейтральной среде характеризуется константами диссоциации. Например, у метилового оранжевого , у фенолфталеина .

Взаимосвязь между константой диссоциации индикатора и значением рН, где происходит изменение его окраски, можно вывести из общих соображений диссоциации индикатора (уравнение (12.2.2)) с учетом З.Д.М. для равновесных концентраций:

(12.2.3)

(12.2.4)

С учетом того, что обычно способность человека к восприятию окраски возможна, когда присутствие одной из окрашенных форм приблизительно в 10 раз больше концентрации другой, получим

(12.2.5)

т. е. интервал значений рН, в пределах которого индикатор изменяет свою окраску, простирается обычно на одну единицу рН в ту или другую сторону от величины рК индикатора. Этот интервал перехода окраски индикатора называют также областью перехода. В Приложении 5 указаны интервалы перехода окраски некоторых индикаторов. Например, область перехода метилового оранжевого простирается от 3,1 до 4,4. При рН > 4,4 метилоранж сохраняет желтую окраску, при рН < 3,1 – розовую. Внутри этого интервала происходит изменение окраски от розового цвета до желтого.

В ходе титрования раствор титранта приливают до отчетливого изменения окраски индикатора. Значение рН, при котором наблюдается резкое изменение окраски индикатора, называют показателем титрования рТ. Например, у фенолфталеина значение рТ = 9, у метилового оранжевого рТ = 4. Обычно величина рТ находится внутри интервала перехода.

Для того чтобы погрешность титрования была наименьшей, надо чтобы изменение окраски индикатора происходило как можно ближе к точке эквивалентности (т. е. конечная точка титрования как можно больше соответствовала точке эквивалентности).

Неправильный выбор индикатора может исказить результат анализа. Чтобы этого не произошло, необходимо в каждом определении представлять, каким образом происходит изменение рН в процессе титрования, в какой среде лежит точка эквивалентности, как резко изменяется рН вблизи точки эквивалентности. Эти процессы описывают кривые титрования.

При выборе индикатора руководствуются следующим правилом: для каждого данного титрования можно применять только те индикаторы, показатели титрования которых лежат в пределах скачка рН на кривой титрования, т. е. у правильно выбранного индикатора интервал перехода полностью или частично перекрывается скачком титрования на данной кривой.

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Кривые титрования»

по предмету аналитическая химия

 

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

Кривые титрования в методе нейтрализации представляют собой графическое изображение изменения рН раствора в процессе титрования в зависимости от количества добавленного титранта.

В зависимости от относительной силы кислот и оснований, участвующих в реакции, различают различные случаи титрования, каждый из которых описывается собственной кривой титрования. Ниже будут рассмотрены четыре типа построения кривых титрования: титрование сильных и слабых кислот сильным основанием; титрование сильных и слабых оснований сильными кислотами.

При построении кривых титрования выделяют следующие основные области расчета рН:

расчет рН до начала титрования;

в процессе титрования до точки эквивалентности;

в точке эквивалентности;

после достижения точки эквивалентности.

До начала титрования значение рН титруемого раствора определяется концентрацией (для сильных кислот и оснований) и константой диссоциации (для слабых кислот и оснований) титруемого раствора; после точки эквивалентности – концентрацией титранта.

В промежуточных точках титрования факторы, определяющие рН титруемого раствора, различны и зависят от того, какое вещество титруют.

Особое значение имеет расчет скачка на кривой титрования. Скачок титрования – это резкое изменение рН вблизи точки эквивалентности. Начало скачка соответствует недостатку в 0,1 % прибавленного титранта (т. е. добавлено 99,9 % титрата), а конец скачка соответствует избытку добавленного титранта в количестве 0,1 %. Скачок титрования – наиболее существенная часть кривой титрования, т. к. именно по нему производят выбор индикатора.

Величина и положение (по шкале pH) скачка титрования зависят от силы титруемой кислоты и основания. Чем больше скачок на кривой титрования, тем меньше погрешность титрования, связанная с выбором индикатора.

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Индикаторная ошибка титрования»

по предмету аналитическая химия

 

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

Индикаторная ошибка титрования представляет собой ту погрешность, которая обусловлена несовпадением показателя титрования примененного индикатора с величиной рН в точке эквивалентности. Избыточное основание является сильным, оно обуславливает возникновение "гидроксильной ошибки".

Всего взято на титрование NV1/100 ионов ОН-. Заканчивается титрование при рН=рТ индикатора. Следовательно, по окончании титрования:

и в V2 мл раствора содержится:

ионов ОН-.

Отсюда NV1/1000 - 100% и:

Следовательно ОН- ошибка равна:

Применяя фенолфталеин, заканчивают титрование при рН=9, т.е. раствор бензойной кислоты будет несколько перетитрован.

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Сущность комплексиметрического титрования»

по предмету аналитическая химия

 

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

Сущность метода комплексонометрии:

Комплексонометрия (хелатометрия) – метод титриметрического анализа, основанный на реакциях взаимодействия определяемых ионов металла с органическими реагентами (комплексонами) с образованием растворимых, бесцветных прочных внутрикомплексных соединений.

Комплексоны - органические соединения, производные аминополикарбоновых кислот, простейшей из которых является иминодиуксусная кислота

CH2COОН

H – N

CH2COOН

Наиболее распространены следующие комплексоны:

Комплексон I, или нитрилотриуксусная кислота

CH2COОН

HOOCH2C – N

CH2COOН

Комплексон II, или этилендиаминтетрауксусная кислота (ЭДТА),

НOOCH2C CH2COOН

N- CH2 - CH2 – N

НOOCH2С CH2COOН,

имеющая бетаионовое строение (два протона связаны с атомами азота)

OOCH2C Н+ Н+ CH2COO-

N- CH2 - CH2 – N

НOOCH2С CH2COOН,

Эту четырехосновную кислоту часто сокращенно обозначают символом Н4Y.

Вследствие низкой растворимости в воде сама кислота не подходит для приготовления раствора титранта. Для этого обычно используют дигидрат ее двунатриевой соли Na2H2Y*2H2O (комплексон III)

НOOCH2C CH2COONa

N- CH2 - CH2 – N

NaOOCH2С CH2COOН,

Комплексон III называют также ЭДТА (этилендиаминтетраацетат), трилон Б, который наиболее широко используется в титриметрии. Комплексонов в настоящее время известно несколько десятков, но они применяются редко.

Высокая устойчивость комплексов металлов с ЭДТА обусловлена наличием в молекуле ЭДТА шести функциональных групп с донорными атомами азота и кислорода, посредством которых молекула ЭДТА связана с ионом металла с образованием симметричной малонапряженной структуры с несколькими пятичленными циклами. Комплекс трилона Б с ионами металлов образуются путем замещения металлом атомов водорода карбоксильных групп и взаимодействия катиона с атомами азота аминогрупп. Комплекс трилона Б с ионами двухвалентных металлов схематично можно представить так

Ме

OOCH2C CH2COONa

N- CH2 - CH2 – N

НOOСH2C CH2COO

Трилон Б используется для определения многих ионов металлов Ca2+, Mg2+,Ba2+, Co2+, Cu2+, Zn2+, Ni2+, Al3+ и другие.

Реакции взаимодействия различных катионов с ЭДТА в растворе можно представить уравнениями:

Me 2+ + H2Y2- = MeY2- + 2H+

Me 3+ + H2Y2- = MeY- + 2H+

Me 4+ + H2Y2- = MeY + 2H+

H2Y2- - анион двунатриевой соли ЭДТА. Из уравнений видно, что независимо от заряда катиона образуются комплексы с соотношением компонентов 1:1. Следовательно, молярная масса эквивалента ЭДТА и определяемого иона металла равны их молекулярным массам.

Степень протекания реакции зависит от рН и константы устойчивости комплексоната. Катионы, образующие устойчивые комплексонаты, например,

Fe (III), могут быть оттитрованы в кислых растворах. Ионы Са(II), Mg(II) и другие, образующие сравнительно менее устойчивые комплексонаты, титруют при рН 9 и выше.

 

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ В Г.НАДЫМЕ ИМ. В.В.РЕМИЗОВА

 

 

Реферат

на тему: «Способы фиксирования точки эквивалентности в комплексиметрии»

по предмету аналитическая химия

 

Выполнила: студентка группы ООСт-10 Байрамова А.

Проверил: преподаватель Воболис О.Н.

 

 

г.Надым 2013

Способы фиксирования точки эквивалентности в методах осаждения

Для фиксирования точки эквивалентности в осадительном титровании применяют:

а) безиндикаторные методы;

б) индикаторы.

Безиндикаторные способы применяют только в аргентометрии

Аргентометрия

Фиксировать точку эквивалентности в аргентометрии можно индикаторными и безиндикаторными способами.

К безиндикаторным способам относится метод Гей-Люссака (метод равного помутнения) и метод титрования до точки просветления.

В методе равного помутнения точку эквивалентности устанавливают по прекращению образования осадка при прибавлении к небольшим порциям титруемого раствора, отобранным в конце титрования, одной капли разбавленного раствора р.в. В некоторых случаях насыщенный раствор, находящийся в равновесии с осадком в точке эквивалентности, дает отчетливое одинаковое помутнение как с раствором р.в., так и с раствором о.в. Например, при осаждении AgCl в точке эквивалентности будет одинаковой интенсивность помутнения одинаковых проб раствора, к одной из которых добавили каплю раствора AgNO3, а к другой - каплю раствора NaCl такой же концентрации. Если же раствор не дотитрован (содержит некоторый избыток Cl--ионов), то большим будет помутнение пробы при добавлении раствора AgNO3. Если же раствор перетитрован (содержит некоторый избыток Ag+-ионов), то более сильное помутнение вызовет добавление NaCl. Равным помутнение будет только в точке эквивалентности.

Метод титрования до точки просветления может быть применен тогда, когда осаждаемое соединение в процессе титрования находится в коллоидном состоянии. В точке эквивалентности происходит коагуляция коллоидного раствора и выпадение осадка; раствор при этом совершенно осветляется. До точки эквивалентности коагуляции частиц мешает наличие у них одноименных зарядов. Например, при титровании раствора NaI раствором AgNO3, до точки эквивалентности частицы AgI адсорбируют I--ионы и заряжены отрицательно. По мере того, как I--ионы вступают в реакцию, количество адсорбированных анионов I- уменьшается, соответственно уменьшается и заряд коллоидных частиц. И, наконец, в изоэлектрической точке становится возможной коагуляция частиц и осаждение их в виде крупных творожистых хлопьев.

Кроме безиндикаторных в аргентометрии используются индикаторные способы фиксирования точки эквивалентности. В качестве индикаторов применяют K2CrO4 и адсорбционные индикаторы.

1. Фиксирование точки эквивалентности с помощью осадительного индикатора - хромата калия (K2CrO4) - метод Мора. Хромат калия с нитратом серебра образует красно-бурый (кирпично-красный) осадок хромата серебра Ag2CrO4.

Окончание титрования устанавливают по окрашиванию осадка галогенида серебра (AgCl или AgBr) и раствора над осадком в характерный оранжевый цвет.

Хромат калия полностью соответствует требованиям, предъявляемым к осадительным индикаторам.

Осадок хромата серебра интенсивно окрашен и образуется только после того, как ионы Cl- или Br- будут оттитрованы. В присутствии этих ионов осадок Ag2CrO4 не образуется, т. к. его растворимость ( моль/дм3) больше растворимости AgCl ( моль/дм3) и AgBr ( моль/дм3).

Хромат калия образует осадок с Ag+-ионами при их концентрации в пределах скачка титрования.

Метод Мора применим для определения хлоридов и бромидов только в нейтральной или слабощелочной среде (рН 7-10). В кислой среде K2CrO4 переходит в K2Cr2O7, не обладающий индикаторными свойствами вследствие высокой растворимости Ag2Cr2O7. В сильнощелочной среде образуется AgOH, распадающийся на Ag2O и H2O.

В пищевой промышленности именно метод Мора применяют при определении массовой доли поваренной соли в самых различных продуктах: маргарине, рыбе, колбасных изделиях и др. (см. раздел 6.7).

2. Фиксирование точки эквивалентности с помощью адсорбционных индикаторов - метод ФАЯНСА.

Из адсорбционных индикаторов в аргентометрии наиболее часто используют флуоресцеин, эозин и родамин 6Ж.

Флуоресцеин (флюоресцеин) - желтовато-красный порошок, растворяющийся в водно-щелочном растворе и органических растворителях. В растворе флюоресцеин зеленовато-желтого цвета, а в адсорбированном состоянии - розово-красного. Он может быть применен в качестве индикатора только при рН>7.

Эозин (тетрабромфлуоресцеин) применяют в виде эозината натрия - мелкокристаллического вещества красного цвета, растворяющегося в воде. Анионы эозина придают титруемому раствору розовую окраску. В точке эквивалентности поверхность осадка окрашивается в красно-фиолетовый цвет. Эозин проявляет индикаторные свойства при рН>2.

Родамин 6Ж. Его применяют в виде 0,1 %-го водного раствора. Он придает раствору красно-фиолетовую окраску. В точке эквивалентности при титровании с родамином 6Ж осадок окрашивается в оранжевый цвет. Механизм действия указанных индикаторов, как адсорбционных, описан в разделе 6.8.1.

Рекомендации по конкретному применению этих, а также других индикаторов адсорбционного типа можно найти в справочной литературе, в частности, в «Справочнике по аналитической химии» [10]. Так, флуоресцеин следует применять при определении методом осадительного титрования ионов Cl-, Br-, I-, SCN-. Эозин пригоден в качестве индикатора при определении всех перечисленных анионов, исключая Cl-.

Родамин 6Ж рекомендуется применять для фиксирования точки эквивалентности в осадительном титровании катионов, например, Ag+.