Технология полёта и посадки

История

В апреле 2004 года НАСА начало отбор предложений по оснащению нового марсохода научным оборудованием, и 14 декабря 2004 года было принято решение об отборе восьми предложений. В конце того же года началась разработка и испытания составных частей системы, включая разработку однокомпонентного двигателя производства компании Aerojet, который способен выдавать тягу в диапазоне от 15 до 100 % максимальной при постоянном давлении наддува.

Создание всех компонентов марсохода было завершено к ноябрю 2008 года, причём большая часть инструментов и программного обеспечения MSL продолжало испытываться. Перерасход бюджета миссии составил около 400 миллионов долларов. В следующем месяце НАСА отложило запуск MSL на конец 2011 года из-за недостатка времени для испытаний.

С 23 по 29 марта 2009 года на сайте НАСА проводилось голосование по выбору названия для марсохода, на выбор было дано 9 слов. 27 мая 2009 года победителем было объявлено слово «Кьюриосити». Оно было предложено шестиклассницей из Канзаса Кларой Ма.

Марсоход был запущен ракетой Атлас V с мыса Канаверал 26 ноября 2011 года. 11 января 2012 года был проведён специальный манёвр, который эксперты называют «самым важным» для марсохода. В результате совершённого манёвра аппарат взял курс, который привёл его в оптимальную точку для десантирования на поверхность Марса.

28 июля 2012 года была проведена четвёртая небольшая коррекция траектории, двигатели включили всего на шесть секунд. Операция прошла настолько успешно, что финальная коррекция, изначально намеченная на 3 августа, не потребовалась.

Посадка произошла успешно 6 августа 2012 года, в 05:17 UTC.[23] Радиосигнал, сообщающий об успешной посадке марсохода на поверхность Марса, достиг Земли в 05:32 UTC.

Задачи и цели миссии

MSL имеет четыре основных цели:

· установить, существовали ли когда-либо условия, подходящие для существования жизни на Марсе;

· получить подробные сведения о климате Марса;

· получить подробные сведения о геологии Марса;

· провести подготовку к высадке человека на Марсе.

Для достижения этих целей перед MSL поставлено шесть основных задач:

· определить минералогический состав марсианских почв и припочвенных геологических материалов;

· попытаться обнаружить следы возможного протекания биологических процессов — по элементам, являющимся основой жизни, какой она известна землянам: (углерод, водород, азот, кислород, фосфор, серу);

· установить процессы, в которых формировались марсианские камни и почвы;

· оценить процесс эволюции марсианской атмосферы в долгосрочном периоде;

· определить текущее состояние, распределение и круговорот воды и углекислого газа;

· установить спектр радиоактивного излучения поверхности Марса.

Также в рамках исследований измерялось воздействие космической радиации на компоненты АМС во время перелёта к Марсу. Эти данные помогут оценить уровни радиации, ожидающие людей в пилотируемой экспедиции на Марс.

Состав

Перелётный модуль Рисунок 1 Модуль управляет траекторией Mars Science Laboratory во время полёта с Земли на Марс. Также включает в себя компоненты для поддержки связи во время полёта и регулирования температуры. Перед входом в атмосферу Марса происходит разделение перелетного модуля и спускаемого аппарата.
Капсула Рисунок 2 Капсула необходима для спуска через атмосферу. Она защищает марсоход от влияния космического пространства и перегрузок во время входа в атмосферу Марса. В верхней части находится контейнер для парашюта, который замедлит спуск капсулы. Рядом с контейнером установлено несколько антенн связи.
«Небесный кран» Рисунок 3 После того, как теплозащитный экран и капсула выполнят свою задачу, они расстыковываются, тем самым освобождая путь для спуска аппарата и позволяет радару определить место посадки. После расстыковки кран обеспечивает точный и плавный спуск марсохода на поверхность Марса, который достигается за счёт использования реактивных двигателей и контролируется с помощью радиолокатора на марсоходе.
Марсоход «Кьюриосити» Рисунок 4 Марсоход под названием «Кьюриосити» является основной частью миссии, содержит все научные приборы, а также важные системы связи и энергоснабжения. Во время полёта шасси складывается для экономии места.
Теплозащитный экран Рисунок 5 Теплозащитный экран защищает марсоход от крайне высокой температуры, воздействующей на спускаемый аппарат при торможении в атмосфере Марса.

 

Спускаемый аппарат Рисунок 6 Масса спускаемого аппарата (изображён в сборе с перелётным модулем) составляет 3,3 тонны. Спускаемый аппарат служит для контролируемого безопасного снижения марсохода при торможении в марсианской атмосфере и мягкой посадки марсохода на поверхность.

Технология полёта и посадки

Перелётный модуль

Траекторию движения Mars Science Laboratory от Земли до Марса контролирует перелётный модуль, соединённый с капсулой. Структурная основа перелётного модуля — кольцевая ферма диаметром 4 метра, представляющая собой конструкцию из алюминия и нескольких стабилизирующих стоек. На поверхности перелётного модуля установлены 12 панелей солнечных батарей, подключённые к системе энергоснабжения. К концу полёта, перед входом капсулы в атмосферу Марса, они вырабатывали около 1 кВт электрической энергии с КПД порядка 28,5 %. Для проведения энергоемких операций были предусмотрены литий-ионные аккумуляторы. Кроме того, система электропитания перелётного модуля, батареи спускаемого модуля и энергосистема «Кьюриосити» имели взаимные соединения, что позволяло перенаправить потоки энергии в случае возникновения неисправностей.

Ориентация космического аппарата в пространстве определялось при помощи звёздного датчика и одного из двух солнечных сенсоров. Звёздный датчик наблюдал за несколькими выбранными для навигации звёздами; солнечный датчик использовал в качестве опорной точки Солнце. Эта система была спроектирована с резервированием для повышения надёжности миссии. Для коррекции траектории применялись 8 двигателей, работающих на гидразине, запас которого содержался в двух сферических титановых баках.

Радиоизотопный термоэлектрический генератор (РИТЭГ) «Кьюриосити» постоянно выделял большое количество тепла, поэтому во избежание перегрева капсулы он должен был находиться на удалении от её внутренних стенок. Некоторые другие компоненты (в частности, аккумуляторная батарея) также нагревалась в процессе работы и требовали отвода тепла. Для этого капсула была снабжена десятью радиаторами, переизлучавшими тепло в открытый космос; система трубопроводов и насосов обеспечивала циркуляцию теплоносителя между радиаторами и охлаждаемыми приборами. Автоматическое управление системой охлаждения осуществлялось при помощи нескольких датчиков температуры.

Перелётный модуль не имеет собственных систем связи, однако на нём установлена антенна среднего усиления («Medium Gain Antenna», MGA), которая присоединена к передатчику спускаемого модуля. Большая часть связи во время полёта, а также на первом этапе посадки проводится с помощью неё. MGA имеет высокую направленность, и для достижения хорошего качества связи требуется её ориентация в направлении Земли. Применение направленной антенны позволяет достичь более высокой скорости передачи данных при такой же мощности передатчика, по сравнению с простой всенаправленной антенной, такой как PLGA. При оптимальной ориентации антенны усиление составляет около 18 децибел, через неё могут передаваться сигналы с левой или правой поляризацией. Передача идет на частоте 8401 МГц, скорость передачи данных до 10 кбит/с. Приём происходит со скоростью 1,1 кбит/с, на частоте 7151 МГц.

Капсула

Капсула производства Lockheed Martin вместе с теплозащитным экраном обладала массой 731 кг, защищая «Кьюриосити» от влияния открытого пространства, а также от воздействия атмосферы Марса при торможении. Кроме того, в капсуле размещался тормозной парашют. На куполе парашюта размещено несколько антенн для поддержания связи. Обшивка капсулы состояла из двух углепластиковых пластин с алюминиевыми подпорками для придания прочности. В нижней части размещался теплозащитный экран.

Контроль траектории и совершение манёвров во время входа в марсианскую атмосферу осуществляли восемь небольших двигателей, выпускающих газ. Двигатели развивали тягу около 267 Н и использовались только для изменения вращения и ориентации капсулы. Эти двигатели не участвовали в торможении.

На верхней части капсулы размещён контейнер для парашюта, замедлившего спуск капсулы в атмосфере. Диаметр парашюта примерно 16 м, он закреплён на 80 стропах и имеет длину свыше 50 метров. Создаваемое тормозное усилие — 289 кН.

На нижней части капсулы размещался теплозащитный экран, защищавший марсоход от воздействия высоких температур (до 2000 °C) при снижении в атмосфере Марса. Диаметр теплозащитного экрана 4.57 м. Это самый большой теплозащитный экран, когда-либо изготовленный для исследовательской миссии. Панели экрана сделаны из углеродных волокон, пропитанных фенолформальдегидной смолой (PICA), подобно использованному в миссии Stardust. Экран способен выдержать тепловую нагрузку до 216 Вт/см2, деформацию до 540 Па и давление около 37 кПа.

Тепловой экран имел 7 датчиков давления и температуры, предназначенных для сбора высокоточных данных о нагрузках на теплозащитный экран. Эти данные имеют большое значение для проектировщиков: с их помощью в конструкцию будущих теплозащитных экранов могут быть внесены изменения. Тем не менее, экран был оптимизирован именно для земной атмосферы, а не для марсианской (последняя в 100 раз тоньше и на 95 % состоит из углекислого газа). Необходимая толщина для безопасного входа в атмосферу была неизвестна. По результатам моделирования и в целях безопасности миссии толщину сделали с запасом, однако толщина повышает массу щита и снижает полезную нагрузку. Результаты применения теплозащитного экрана в составе MSL позволят уменьшить толщину экрана для применения в будущих марсианских миссиях.

Капсула была закреплена на перелётном модуле, не имевшем собственных систем связи. На вершине контейнера с парашютом в капсуле размешено несколько антенн. В X-диапазоне используются две антенны — широконаправленная парашютная антенна (PLGA) и наклонная широконаправленная антенна (TlGa), которые необходимы для связи во время полёта. Антенны отличаются только расположением, при этом каждая из них действовала в «слепом» секторе другой антенны. Коэффициент усиления антенн составляет от 1 до 5 дБ, при этом контейнер парашюта существенно влияет на распространение сигнала, вызывая его отражение. В начале миссии (на незначительном удалении от Земли) данные передавались со скоростью 1,1 кбит/с, скорость приёма данных достигала 11 кбит/с. С увеличением расстояния скорость передачи данных постепенно снизилась до нескольких десятков бит в секунду.

Во время посадки связь в дециметровом диапазоне длин волн осуществлялась через широконаправленную парашютную антенну (PUHF), состоящую из восьми небольших антенн, закреплённых на стенках контейнера, в котором сложен парашют.[35] В результате PLGA и TlGa очень стабильны по сравнению со всенаправленной и приёмной антеннами — информация может быть передана в экстремальных условиях полёта даже при большой скорости. Этот проект был успешно использован в Mars Phoenix Lander. Коэффициент усиления антенны составляет от −5 до +5 дБ, а скорость передачи данных — не менее 8 кбит/с.