Волновая функция, некоторые ее свойства, плотность вероятности. Уравнение Шредингера

Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где — координатный базисный вектор, а — волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

.

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема : .

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.

Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнения Гамильтона или уравнение второго закона Ньютона в классической механике или уравнения Максвелла для электромагнитных волн.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

Уравнение Шрёдингера можно получить из принципа наименьшего действия, рассматривая как уравнение Эйлера некоторой вариационной задачи, в которой плотность лагранжиана имеет вид: .[10]

уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке в момент времени , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

49. Уравнение Шредингера. движение свободной частицы. частица в одномерной прямоугольной "потенциальной яме" с бесконечно высокими стенками

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке в момент времени , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид: