Методы определения загазованности воздуха

Общие сведения

 

Технологические процессы в целом ряде производств сопровождаются выделением в воздушную среду рабочей зоны вредных (токсичных) веществ: газов, паров и пыли. Наличие вредных веществ в воздухе вышеустановленных санитарными нормами предельно допустимых концентраций неблагоприятно влияет на организм человека, может вызвать отравление, а при длительном воздействии – профессиональное заболевание.

 

Действенным методом борьбы с загазованностью и запыленностью воздуха рабочей зоны является нормирование содержания вредных веществ. Был введён принцип нормирования предельно допустимых концентраций (ПДК) вредных веществ в атмосферном воздухе. В соответствие с ГОСТ 12.1.005-88 под ПДК понимается концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 часов или при другой продолжительности, но не более 41 часа в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдельные сроки жизни настоящего и последующих поколений.

 

Максимальную разовую ПДК устанавливают с целью, предупреждения рефлекторных реакций у человека (ощущения запаха, изменение биоэлектрической активности головного мозга, световой чувствительности глаз и др.) при кратковременном воздействии атмосферных загрязнений (до 20 мин.), а среднесуточную – с целью предупреждения их общетоксичного, канцерогенного, мутагенного и других влияний.

 

Обоснование максимальной разовой ПДК атмосферных загрязнений проводят по результатам наблюдений при кратковременном (5 – 20 минут) вдыхании воздуха с содержанием малых концентраций изучаемого вещества.

 

К настоящему времени Министерство здравоохранения РФ утвердило нормативы ПДК более чем для 2400 видов веществ и их соединений.

 

Воздух рабочей зоны может загрязняться как газообразными вредными веществами, так и твёрдыми (пылью).

 

Производственная пыль – это мельчайшие твёрдые частицы веществ, образующиеся при дроблении, размоле, механической обработке различных материалов, ремонте машин, погрузке и выгрузке сыпучих материалов и т.д.

В общем виде размеры частиц лежат в области от 0,001 до 50 мкм, при этом основной вклад в массу аэрозольного вещества дают частицы в диапазоне от 0,1 мкм. В этом диапазоне размеров частицы во взвесях имеют время жизни от нескольких секунд до нескольких месяцев. На поведение частиц размером менее 0,1 мкм оказывает существенное влияние броуновское движение за счёт столкновения с отдельными молекулами. Частицы размерами между 0,1 и 1 мкм в спокойной атмосфере имеют скорость оседания несравненно меньше, чем скорость ветра; при размере более 1 мкм оседание заметно, но все ещё мало; для частиц размером примерно 2,0 мкм скорость оседания велика. Такие частицы удаляются из атмосферы гравитационным оседанием или другими инерционными процессами.

 

Производственная пыль может быть самой различной дисперсности, под которой понимается вся совокупность размеров составляющих ее частиц. По дисперсности различают пыли следующих классификационных групп:

 

I – очень крупнодисперсная (свыше 100 мкм);

II – крупнодисперсная (более 50 мкм);

III – среднедисперсная '(10 – 50 мкм);

IV – мелкодисперсная (менее 10 мкм);

V – очень мелкодисперсная (менее 5 мкм).

 

Наибольшую опасность представляет частицы пыли, до 5 мкм, так как они сравнительно легко проникают в легочную ткань человека. Пылевые частицы размером более 10 мкм задерживаются в верхних дыхательных путях и с мокротой выводятся наружу.

 

Методы определения содержания вредных веществ в воздушной среде

 

Методы определения загазованности воздуха

Микрообъёмный метод

 

Метод основан на свойствах отдельных компонентов газовой смеси вступать в химические реакции только с определёнными реактивами – поглотителями. При пропускании газовой смеси черев раствор – поглотитель за счёт поглощения отдельных компонентов, сокращается общий объём газовой пробы. По этой разности объёма газовой пробы до поглощения и после устанавливается содержание компонента в смеси (в % объёмных).

 

Фотометрический метод

 

Многие вещества способны растворяться в специальных растворах или в воде, придавая им определённую окраску. Степень окраски зависит от концентрации вредного вещества. В свою очередь окраска раствора влияет на его светопропускание. На этой способности растворов основан фотометрический метод анализа, т.е. измерения интенсивности светопоглощения окрашенными растворами по сравнению со стандартными шкалами.

 

К фотометрическим методам относятся; колориметрические и нефелометрические методы, основанный на визуальных наблюдениях или осуществляемые с помощью специальных приборов – фотоэлектро-колориметров, спектрофотометров и нефелометров.

 

Люминесцентный метод

 

Метод основан на способности некоторых веществ отдавать поглощенную ими энергию в виде светового излучения. Явление, когда по окончании процесса возбуждения люминесценция практически прекращается, называется флуоресценцией, когда не она продолжается в течение некоторого времени – фосфоресценцией.

Спектроскопический метод

 

Метод основан на способности элементов, помещённых в пламя вольтовой дуги (3500-4000°С), давать определенный спектр излучения, который пропускается через систему линз и фиксируется на фотопластинке. Каждый элемент обладает своим спектром излучения, своей характерной линией спектра, С помощью микрофотометра измеряют интенсивность потемнения спектральных линий, присущих данному веществу, интенсивность потемнения фона пластинки и ряда специально подобранных «эталонов» – стандартов. Определение ведут по градуировочным графикам.

 

Полярографический метод

 

Метод основан на измерений предельного тока диффузии, возникающего при электролизе испытуемого раствора, с помощью ртутных (или других) электродов, при этом катодом служат – капли ртути, вытекающего из капилляра, а анодом – слой ртути в электролизе, имеющий значительную большую поверхность, чем катод. На эту ртуть в электролизе наливают испытуемый раствор. В момент разряжения на электроде ионов, способных восстанавливаться или окисляться, при определённом потенциале возникает ток, который после достижения некоторой величины остаётся постоянным, так называемый предельный ток диффузии.

 

Хроматографический метод

 

При хроматографии осуществляется разделение многокомпонентной газовой смеси, движущейся вдоль специального вещества-сорбента, на бинарные смеси отдельных компонентов.

 

 

Колориметрический метод

 

Метод основан на протягивании воздуха, содержащего загрязняющее вещество, через раствор, фильтровальную бумагу или зернистый твёрдый сорбент и измерении интенсивности полученной на них окраски путём сравнения с окраской стандартных шкал.