Мембранные биореакторы (МБР)

Введение

Во всей вселенной существует молекула, которую человек жадно ищет на поверхности далекой планеты или в ее атмосфере и обнаружение которой помогло бы реализовать все безумные фантазии человечества: найти жизнь вне нашей планеты.

Эту молекулу можно представить в виде равнобедренного треугольника с характерным межатомным углом равным 105. Формула этой молекулы может быть записана очень просто: Н2О, т.е. данная молекула образуется при слиянии одного атома кислорода и двух атомов водорода, - это вода.

Вода является наиболее распространенным минеральным веществом на поверхности Земли. Она образует гидросферу. Её объем составляет 1385 х 106 км3, из них 97,4% находится в океанах, которые составляют 71 % от земной поверхности, 2% - в виде льда и только 0,6 % (это составляет 8 х 106 км3) –в виде континентальных пресных вод

На земной поверхности объем доступных пресных вод составляет приблизительно 350 000 км3 объем льда ледниковых шапок на полюсах, которые также являются пресной водой, равен 25х106 км3.

Вода необходима для биологической жизни. Это главный компонент живой материи- в среднем вода составляет 80%. У высших организмов процент содержания воды колеблется между 60 и 70 %.

Как главный элемент неживой или живой материи, вода является также одним из важнейших элементов жизни и деятельности человека. Сейчас общий объем потребляемой воды, которая используется в домашнем хозяйстве, в промышленности и сельском хозяйстве, значителен- 250 м3 в год на душу населения. Однако, эта величина колеблется от 100 м3 для развивающихся стран до 2000 м3 в США. ООН в лице Всемирного совета по воде считает, что напряженность в обеспечении водой (водный стресс) возникает, если объем возобновляемых источников воды составляет меньше 1000 м3/год считается критическим. Многие страны уже достигли этого предела или быстро приближаются к нему (в виду демографического роста), так что потребуется либо прибегнуть к транспортировке воды на дальние расстояния (и даже из за границы), либо использовать новые ресурсы, включая повторное использование сточных вод или опреснение морской воды и возможности экономии воды путем борьбы с утечками из трубопроводов и с ее излишним расходованием.

Нет сомнения в том, что потребность человечества в воде не перестанет расти это подразумевает крайнюю необходимость беречь воду и очищать ее для потребления, для специфических промышленных целей, а также ограничивать сброс загрязнений в окружающую среду.

 

Водоотведение

Задачи и методы очистки

Освоение человеком все новых территорий ведет к сокращению природных запасов воды и увеличению отходов жизнедеятельности. Природа вокруг крупных мегаполисов не справляется с сохранением природного равновесия. Складирование отходов, спуск сточных вод в водные бассейны в количестве большем, чем необходимо для самоочищения приводит к загрязнению водных ресурсов. В связи с этим на данном этапе актуальным вопросом является очистка сточных вод и поддержание водного баланса.

Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода)

Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.

Как правило, на очистных сооружениях применяется комплексная очистка, так как в большинстве случаев сточные воды имеют различный характер загрязнения.

В России действуют одни из самых жестких требований в мире к качеству очистки сточной воды. При этом большинство существующих канализационных очистных сооружений построены в 70-80-х годах по типовым проектам и только 15% сточных вод удовлетворяют требованиям на сброс в водоприемники.

На сегодняшний день отдельно выделяют мембранную очистку сточных вод. Она является наиболее продуктивной и представляет собой комплекс из особых полупроницаемых мембран, отделяющих фильтрат от очищаемой суспензии. Жидкая часть загрязненной субстанции проходит сквозь перегородку, а механические частицы задерживаются мембранным фильтром.

 

Системы очистки сточных вод могут включать в себя следующие процессы:

§ обратный осмос (основан на принципе полупроницаемых мембран);

§ микрофильтрация (разделение взвесей, коллоидных смесей под реакцией давления);

§ ультрафильтрация (происходит за счет различия молекулярных масс и размеров молекул);

§ диализ (использует градиент концентрации);

§ электродиализ (осуществляется за счет влияния электрического тока на ионы растворенных смесей).

Также следует отметить, что в мембранной очистке воды большую роль играет материал мембраны, т.е. чем образована фаза самой мембраны. Этот признак – основная причина огромного разнообразия мембран. Выделяются следующие группы в мембранной очистке воды:

§ материалы биологического происхождения (стенки внутренних органов, клеточные оболочки);

§ полимеры растительного происхождения (целлюлоза, продукты ее переработки);

§ полимеры синтетические;

§ силикатные стекла;

§ металлы (чистые и сплавы);

§ углеродные материалы (графит, сажа);

§ керамические материалы (оксиды, карбиды, нитриды и другие соединения металлов);

§ водонерастворимые жидкости (углеводороды, липиды, с добавками комплексонов, ПАВ и др.);

Мембранные биореакторы (МБР)

История развития МБР

Впервые идея мембранных биореакторов была реализована в конце 1960-х годов, как только мембраны ультрафильтрации (УФ) и микрофильтрации (МФ) стали доступны не только для научного, но и для коммерческого использования. Оригинальный процесс был внедрен корпорацией Dorr-Olivier – они использовали сочетание активного ила и мембранной фильтрации. Плоские листы мембраны, применяемые в этом процессе, были полимерными, величина пор от 0,003 до 0,01 мкм. Хотя идея замены традиционного отстойника активного ила была привлекательной, было трудно оправдать применение такого сложного процесса для очистки сточных вод из-за трех факторов: высокой стоимости мембран, низкой экономической стоимости товара (серых стоков), а также быстрой потери производительности мембраны из-за загрязнения ее пор. Из-за низкой окупаемости всех мембранных биореакторов первого поколения они нашли применение только на очень малой доле очистных сооружений с особыми потребностями, например, на отдельно стоящих горнолыжных курортах.

Прорыв в развитии мембранных биореакторов произошел в 1989 году, когда корпорация «Ямамото» решила погрузить мембраны непосредственно в биореактор. До тех пор все мембранные биореакторы были разработаны с разделением устройств и принцип их работы базировался на создании высокого трансмембранного давления для поддержания фильтрации, а это требовало поддержания большого расхода сточных вод.

Системы очистки с мембраной, погруженной в биореактор, работают при более низком расходе сточных вод и потребляют значительно меньшее количество энергии (энергопотребление может быть на два порядка ниже, чем у раздельных систем). В конфигурации с погружной мембраной важным параметром, влияющим на процесс очистки вод, является аэрация. Аэрация поддерживает твердые вещества в состоянии суспензии, очищает поверхности мембраны и обеспечивает кислородом биомассы, что приводит к лучшему биологическому разложению и клеточному синтезу.

Другим ключевым шагом в развитии последних мембранных биореакторов была идея использовать двухфазную пузырьковую жидкость для контроля загрязнения. Это позволило автоматизировать процессы очистки. Низкие эксплуатационные затраты, достигнутые при применении погружной конфигурации мембранного биореактора, наряду с устойчивым снижением стоимости мембраны, привели к значительному росту применения установок с середины 1990-х годов. С того времени конструкцию постоянно модифицировали, применялись улучшенные типы мембраны, проводились эксперименты по подбору оптимальной скорости потоков сточных вод и аэрируемого воздуха с целью увеличить срок службы мембраны. В последние годы была разработана процедура более четкого контроля рабочих параметров, а также внедрена обратная промывка, которая позволяет мембранным биореакторам устойчиво функционировать и затрачивать небольшое количество энергии, около 0,3 кВт·ч на м3продукта.

Тем не менее, несмотря на использование обратной промывки, производительность фильтрации мембранного биореактора неизбежно снижается в процессе эксплуатации. Это происходит из-за отложения растворимых и твердых частиц на и в мембране, что связано с взаимодействием между компонентами активного ила и мембраны. Это основной недостаток остается одной из наиболее сложных проблем, стоящих перед дальнейшим развитием мембранных биореакторов.

При любом мембранном фильтровании требуется периодическая чистка мембраны для восстановления ее исходных характеристик и снятия возможных органических и минеральных отложений. Промывка мембранного блока осуществляется с помощью циркуляционного насоса, который обеспечивает равномерное омывание мембран по всей их длине, что гарантирует одинаковую чистоту поверхности в любой точке. Промывка мембранного блока полностью автоматизирована. Она длится несколько часов и осуществляется несколько раз в год в качестве профилактической меры в автоматическом режиме.

Общие понятия МБР

Мембранный биореактор сочетает биологическую обработку активным илом с механической мембранной фильтрацией. Мембранный модуль используется для разделения иловой смеси и представляет собой альтернативу широко применяемому методу осаждения активного ила во вторичных отстойниках, используемую в традиционных системах биологической очистки в аэротенках.

При очистке бытовых сточных вод мембранные биореакторы могут производить «серые» воды достаточно высокого качества для того, чтобы их можно было сбросить в естественные водоемы или же использовать в системе орошения, предназначенной для полива городских зеленых насаждений. Другие преимущества, которые отличают системы очистки с использованием мембранных биореакторов: компактный размер, поэтому их легко можно применить при модернизации старых очистных сооружений; возможность работы систем мембранных биореакторов при более высокой концентрации активного ила, а также, благодаря особенностям фильтрации с помощью мембран, исключить вынос активного ила в очищенные воды позволили добиться уменьшения объема биореактора без снижения его производительности.

Существует два типа биореакторов:

  • с внутренним расположением мембраны: погруженные в очищаемую воду мембраны являются неотъемлемой частью биологического реактора;
  • внешним расположением мембран: мембраны отделены от технологических емкостей и требуют установки промежуточных перекачивающих насосов.

На рис. 1 представлена традиционная схема очистки сточных вод и схема очистки с помощью мембранного биореактора. Представленная схема очистки с биореактором способна отфильтровать из сточных вод твердые вещества, болезнетворные микроорганизмы и вирусы.

Последние технические инновации и значительное снижение стоимости мембран привели к росту популярности мембранных биореакторов. Их применяют для обработки и повторного использования как бытовых, так и промышленных сточных вод. Об успешном применении данной технологии свидетельствует тот факт, что на рынке появляются новые типоразмеры мембранных реакторов, а также увеличивается мощность этих устройств.

Также распространение данных систем обусловлено ростом спроса на LEED-сертифицированные здания. Рециркуляция воды вносит существенный вклад в достижение цели строительства экологически безопасных зданий, не наносящих вред окружающей среде. Данного мнения придерживается Green Building Council, которая администрирует программу LEED в США.

Действительно, огромные энергетические и строительные ресурсы тратятся на то, чтобы транспортировать сточные воды к очистным сооружениям, очищенные сточные воды затем сбрасываются в реки, из рек вода снова забирается, повторно очищается в системах водоподготовки, затем транспортируется к потребителю с помощью энергозатратных насосных установок. Получается, что мы прилагаем много сил и тратим впустую ресурсы только для того, чтобы перегонять значительное количество воды на большие расстояния, вместо того чтобы сразу на месте ее очистить и использовать.

Принцип действия МБР

В основу действия биореактора положен синтез биотехнологии и технологии разделения водных суспензий на ультрафильтрационных полимерных мембранах.

Система мембранного биореактора состоит из аэротенка и мембранного модуля, оборудованного половолоконными ультрафильтрационными или микрофильтрационными мембранами. Обрабатываемые сточные воды поступают в аэротенк. Находящаяся в аэротенке иловая смесь циркулирует через мембранный модуль. Ультрафильтрационные мембраны служат для повышения концентрации активного ила в аэротенке и глубокой очистки обрабатываемых сточных вод. Аэротенк в системе мембранного биореактора работает с высокой концентрацией активного ила, поэтому его размеры в 2–3 раза меньше размеров классического проточного аэротенка.

Мембранный модуль состоит из 10–20 кассет с мембранами. В каждой кассете располагаются от 5 до 15 пучков мембранных волокон. Половолоконная мембрана представляет собой полую нить наружным диаметром около 2 мм и длиной до 2 м. Поверхность нити представляет собой ультрафильтрационную мембрану с размером пор 0,03–0,1 мкм.

Каждый пучок состоит из 100–1000 мембранных волокон и оборудован общим патрубком отвода фильтрата. Столь малый размер пор является физическим барьером для проникновения организмов активного ила, имеющих размер более 0,5 мкм, что позволяет полностью отделить активный ил от сточной воды и снизить концентрацию взвешенных веществ в очищенной воде до 1 мг/л и менее.

Фильтрация происходит под действием вакуума, создаваемого на внутренней поверхности мембранного волокна самовсасывающим насосом фильтрации. Для организации фильтрации между внутренней полостью мембран и пространством мембранного блока создается разность давлений (0,01~0,06 MПа). При этом смесь сточных вод и активного ила фильтруется через поверхность мембран снаружи вовнутрь. В результате отделения твердых и коллоидных частиц на половолоконных мембранах концентрация активного ила в блоке мембранного биоректора и в аэротенке повышается, что способствует глубокой биологической очистке стоков и обеспечивает уменьшение объема аэротенка в 2–3 раза.

Очищенная вода поступает по напорным трубопроводам на обеззараживание, а активный ил остается в мембранном резервуаре и поддерживается во взвешенном состоянии с помощью системы аэрации, встроенной в мембранный модуль.

Аэрирование осуществляется сжатым воздухом с помощью аэрационных систем (воздуходувок). В зависимости от требуемой производительности мембранные модули объединяются в мембранный блок. Число мембранных модулей в блоке может быть увеличено при необходимости повышения производительности системы.

Применяемое в системах мембранных биореакторов касательное фильтрование иловой смеси предотвращает ее забивание, т.е. накопление отложений (бактерий). Такое движение иловой смеси обеспечивается циркуляционным насосом с производительностью, значительно выше расхода подлежащей обработке сточной воды. Возможность регулирования расхода и давления в циркуляционном контуре позволяет наладить полноценное управление процессом мембранного фильтрования при максимальной его эффективности. Кроме того, реализация режима касательного фильтрования имеет положительные последствия в отношении биологии всей системы. Постоянное омывание мембран диспергирует очищающие бактерии, которые более не образуют плотные флоккулы, а потому возможность их прямого контакта с загрязнениями и кислородом значительно увеличивается. Из этого следует, что соотношение активных бактерий и окисляемых загрязнений оказывается большим в системе МБР, чем это обычно встречается в классической системе с активным илом.

Микроорганизмы активного ила не выносятся из системы МБР, поэтому биореактор работает в условиях высокой концентрации биомассы значительного возраста. Кроме того, постоянная циркуляция приводит к механическому воздействию на оболочки бактерий. Именно поэтому основная потребляемая бактериями энергия используется не для размножения (как это происходит в классических биотехнологиях), а расходуется для поддержания жизнедеятельности, что приводит к снижению прироста избыточной активной биомассы.

Особенности технологии

Отказ от гравитационного метода разделения иловой смеси позволяет повысить концентрацию активного ила в биореакторе до 10–20 г/л (в обычном аэротенке – до 3 г/л).

Высокие концентрации активного ила позволяют эксплуатировать биореактор в режиме низких нагрузок, что создает резерв окисляющей способности, повышает устойчивость биоценоза активного ила к колебаниям состава сточных вод и пиковым нагрузкам, обеспечивает стабильное качество очистки. С другой стороны, высокие концентрации активного ила многократно повышают окисляющую мощность сооружения в целом, что дает возможность очищать высококонцентрированные сточные воды с содержанием органических веществ по ХПК до 4–5 г/л.

При переходе от гравитационного метода разделения иловой смеси к мембранной фильтрации наблюдаются глубокие изменения в структуре биоценоза активного ила. Возраст ила в МБР обычно составляет 25–30 сут., нередко превышая 60–70 сут. При этом основная часть активного ила представлена медленнорастущей микрофлорой, которая наиболее эффективно разлагает трудноокисляемые органические вещества в сточной воде. Преобладание медленнорастущей микрофлоры позволяет значительно снизить прирост активного ила, а следовательно, необходимые мощности оборудования по обезвоживанию избыточного активного ила.

Размер хлопьев активного ила в МБР в 5–10 раз меньше, чем в распространенных конструкциях аэротенков. Такая дисперсность активного ила приводит к увеличению площади контакта микроорганизмов со сточными водами, повышая эффективность сорбции активными илом инертных веществ, тяжелых металлов, микрозагрязнителей.

Вследствие того, что поры мембран имеют меньший размер, чем размеры клеток микроорганизмов, в частности, бактерий, в МБР происходит частичное обеззараживание воды. Эффективность удаления бактерий составляет 99,999%, вирусов – 99,9%. Непосредственно после МБР очищенная вода может быть сразу направлена на повторное использования для непитьевых целей.

Высокие дозы ила позволяют сократить время пребывания сточных вод в сооружении. Как следствие, площадь, занимаемая МБР, в 2–4 раза меньше площади, занимаемой традиционными сооружениями биологической очистки.