Назначение конденсационного устройства

Конденсационное устройство нормальной турбогенераторной установки имеет два назначения:

1) установить и поддерживать определенное вакуумметрическое давление (разрежение) у выпускного патрубка турбины;

2) превращать в воду (конденсат) отработавший в турбине пар для возвращения воды в паровые котлы.

Мы знаем, что получаемая в турбине от 1 кг пара механическая энергия будет тем больше, чем больше располагаемый теплоперепад; также нам известно, что повышение верхнего предела давления (давления свежего пара) имеет относительно меньшее значение, чем понижение нижнего предела (давления выпуска), так как увеличение располагаемого теплоперепада при повышении начального давления пара идет гораздо медленнее, чем при понижении конечного давления. Очевидно, что расширение пара можно вести только до давления в той среде, куда он выпускается (противодавления). Следовательно, чем ниже будет давление этой среды, тем больший перепад тепла может быть использован турбиной при одном и том же начальном состоянии пара.

Вполне понятно, что стационарные турбины нормального типа имеют конденсационные устройства, приспособленные для работы с глубоким вакуумом. Нужно отметить, что предел вакуума при проектировании установки ставится соображениями экономического характера и обычно не превышает 96-97%, так как дальнейшее углубление вакуума приводит к очень большим размерам конденсатора, большой мощности насосов, колоссальным количествам охлаждающей воды и в результате может не только не понизить, но даже повысить стоимость выработки электроэнергии.

Вакуум, дальнейшее углубление которого в данной турбинной установке не увеличивает полезного использования перепада тепла, называется предельным вакуумом.

При проектировании турбин предельной мощности расчетную глубину вакуума часто приходится ограничивать для того, чтобы получить приемлемые размеры лопаток последней ступени, пропускающей пар при наибольшем его объеме.

Типы конденсаторов

Рассмотрим способы получения глубокого вакуума, то есть более или менее совершенного разрежения.

Допустим, что сосуд 1 (рис. 1) соединен с котлом 2 трубкой, имеющей кран 3, посредством крана 4 сосуд может сообщаться с атмосферой. Открыв оба крана, соединим сосуд с котлом и атмосферой; пар вытеснит воздух из сосуда, наполнит его и начнет вытекать в атмосферу. Если закрыть теперь оба крана, то сосуд окажется наполненным паром под известным давлением; допустим, что давление в сосуде равно 1 ата и что пар не содержит примеси воздуха или неконденсирующихся газов.

Охладив сосуд тем или иным способом, мы можем сконденсировать почти весь находящийся в нем пар; образовавшийся конденсат займет очень незначительный объем (для данного давления 1/1725 объема сосуда) и в сосуде установится очень малое абсолютное давление; например, при охлаждении пара до 20оС оно будет составлять около 0,024 ата. Полного разрежения (то есть отсутствия давления) получить нельзя, потому что в сосуде всегда останется небольшое количество несконденсированного пара, тем меньше, чем ниже температура. Кроме того водяной пар всегда содержит некоторое количество смешанного с ним воздуха, который не будет конденсироваться, а останется в сосуде и будет создавать некоторое дополнительное давление, которое будет складываться с давлением несконденсировавшегося пара.

Соединив с сосудом два насоса, из которых один откачивал бы конденсат, а другой - воздух, выделяющийся из пара при конденсации, мы могли бы непрерывно поддерживать в сосуде глубокий вакуум, пуская в него пар и заставляя его конденсироваться. На описанном принципе и основана работа конденсаторов всех систем.

Отсюда ясна ошибочность представления, что вакуум в конденсаторе создается и поддерживается только работой воздухоудаляющих устройств, например эжекторов; в действительности они играют только вспомогательную роль.

Охлаждение пара в стационарных паросиловых установках производится, как правило, водой, причем вода может соприкасаться с паром непосредственно или же через теплопроводную стенку. По этому признаку существующие системы конденсаторов можно разделить на две основные группы:

1) смешивающие конденсаторы;

2) поверхностные конденсаторы.

Смешивающие конденсаторы применялись только для небольших турбин старых конструкций да и то редко, ввиду чего мы подробно рассматривать их не будем.

Поверхностный конденсатор с водяным охлаждением, схематически изображенный на (рис. 4), состоит из клепанного или сварного стального или реже литого чугунного корпуса 1, по концам которого установлены трубные доски 2 с большим количеством закрепленных в них тонкостенных трубок 3. Барабаны между трубными досками и крышками 4 конденсатора, называемые водяными камерами 5, часто делятся перегородками на два или несколько отделений. На (рис. 4) охлаждающая вода подводится под напором через патрубок 6 к нижнему отделению водяной камеры, проходит по трубкам во вторую камеру, меняя направление на обратное и уходит, пройдя по другой части трубок, из верхнего отделения первой камеры через патрубок 7. Такой конденсатор называетсядвухходовым и чаще всего применяется для турбин мощностью 10000-50000 кВт. Для турбин меньшей мощности нередко применяются трех- или четырехходовые конденсаторы, в которых перегородки расположены так, что вода меняет направление 2 или 3 раза. Для самых крупных турбин применяют одноходовые конденсаторы, у которых вода входит с одного конца и выходит с другого, проходя по всем трубкам одновременно.

Охлаждающая поверхность конденсатора образуется совокупностью поверхностей трубок; отработавший пар входит в конденсатор сверху через горловину 8, соединяющую его с турбиной, соприкасается с холодной поверхностью трубок и конденсируется. Конденсат стекает вниз и скопляется на дне конденсатора или в специальном сборнике 9, откуда откачивается специальным (конденсатным насосом. Другой насос через патрубок10 отсасывает проникший в конденсатор воздух вместе с небольшим количеством несконденсировавшегося пара.

Таки образом, конденсационная установка (рис. 5) состоит из следующих агрегатов:

1. конденсатор 1;

2. циркуляционного насоса 2, прокачивающего охлаждающую воду сквозь трубки конденсатора;

3. конденсатного насоса 3, откачивающего конденсат из конденсатора;

4. воздушного насоса (или эжектора) 4, отсасывающего из конденсатора воздух (паровоздушную смесь).

Паровые турбины, как правило, снабжают поверхностными конденсаторами. Причина этого кроется в том, что в поверхностном конденсаторе конденсат не смешивается с охлаждающей водой; отработавший пар турбин не содержит масла, как отработавший пар поршневых машин, поэтому конденсат вполне пригоден для питания котлов без предварительной очистки. Таким образом, при поверхностной конденсации одно и то же количество конденсата постоянно циркулирует в системе котел-турбина-конденсатор-котел, причем восполнять очищенной и обессоленной водой приходится только то небольшое количество, которое теряется на утечки пара из лабиринтов и через неплотности и расходуется на продувку котлов и обслуживание некоторых вспомогательных механизмов.

Существенным достоинством поверхностной конденсационной установки является также то, что в ней почти полностью удаляется воздух из конденсата или, говоря иначе, деаэрируется конденсат, что очень важно для сохранения котлов и трубопроводов от ржавления.