Измерительные трансформаторы тока

 

Измерительные трансформаторы тока используются при измерениях токов в цепях переменного тока. Они осуществляют преобразования больших по величине токов в относительно малые токи, проходящие через измерительный прибор. Измерительный трансформатор состоит из двух изолированных друг от друга обмоток, размещённых на магнитопроводе из электротехнической стали или пермаллоя. Первичная обмотка с числом витков w1 включается в цепь измеряемого тока: её выводы маркируются буквами Л1, Л2 . Если первичный ток I1 превышает значение 500 А, первичная обмотка может состоять всего из одного витка в виде прямой шины или кабеля, проходящего через окно сердечника. Вторичная обмотка с числом витков w2наматывается из провода небольшого сечения. Сечение должно быть рассчитано на стандартное значение вторичного тока, равное 5 А. Изредка встречаются трансформаторы тока с номинальным вторичным током 1; 2 или 2,5 А. Выводы вторичной обмотки трансформатора тока маркируются буквами U1 ,U2 . При измерении в высоковольтных цепях вторичная обмотка и металлический корпус трансформатора подлежат заземлению – рис. 3.4. Ко вторичной обмотке последовательно подключают амперметры и токовые обмотки ваттметров, счётчиков и других приборов.

Ток I1 в первичной обмотке создаёт переменный магнитный поток Ф. Этот поток, пронизывая обе обмотки, индицирует в них ЭДС.

Е = 4,44 w f Ф макс

 

Если вторичную обмотку замкнуть на прибор, то в ней появится ток I2. По показанию приборов, включенного во вторичную цепь, зная коэффициент трансформации, можно определить значение первичного тока I1. Трансформатор тока характеризуется номинальным коэффициентом трансформации тока:

І w2

кi ном ═ ——— ═ ——

І w1

 

Зная показания прибора I2 можно вычислить ток в линии

I1 = I1 k i ном

Как правило, шкала прибора градуируется непосредственно в единицах тока I1 ; в этом случае на шкале прибора указывается надпись «С трансформатором тока I / I ».

 

I1 Л1 Л2

 

 

Рис. 3.4. Схема включения

W1 Ф0 трансформатора тока.

W2

 

I2 U1 U2

А

 

Действительный коэффициент трансформации зависит от режима работы и может отличаться от номинального

k1 =I1 /I2

Разница в действительном и номинальном коэффициентах трансформации определяет погрешность коэффициента трансформации, называемую токовой погрешностью:

kiном – k1

γ1 ═ ————— 100 % ≈ (1 – k1/kіном) 100 %.

k1

Токовая погрешность сказывается на показаниях всех приборов, включенных во вторичную цепь. Кроме токовой, трансформатор обладает угловой погрешностью δ, представляющей собой разность фаз между вектором тока I1и вектором токаI2 , повёрнутым на 1800 С,. Считается, что δ>0, если вектор I2 , повёрнутый на 1800С, опережает I1. Угловая погрешность обусловлена реактивностью трансформатора и влияет на точность показаний только фазочувствительных приборов (фазометров, ваттметров, счётчиков).

Векторная диаграмма трансформатора тока приведена на рис. 3.5.

I0W1

 


-I2w2 I1w1

δ Рис. 3.5. Векторная

диаграмма трансфор-

матора тока.

IQw1

0 Ф0

I2R Iµw1

U2

I2x

 

E2

I2w2 I2x2

 

Трансформатор тока работает в режиме, близком к короткому замыканию, так как в его вторичную обмотку включаются приборы с малым сопротивлением Z=R+jX. I2 w 2 представляет собой магнитодвижущую силу (МДС) вторичной обмотки. Вектор напряжения U2 на вторичной обмотке получают геометрическим суммированием падений напряжений на обмотке I2R и I2х на активной и реактивной составляющих сопротивления нагрузки. Векторная сумма напряжения U2 и вектора падения напряжения на обмотке I2z2 равна ЭДС Е2 , наводимой во вторичной обмотке потоком Ф0 в магнитопроводе. Поток Ф0 образуется в результате совместного действия МДС I1w1 и размагничивающей МДС I2w2 . Результирующая МДС I0w1 называется полной МДС трансформатора. Она создается намагничивающим током І0 и состоит из реактивной составляющей Iu w1 , создающей поток Ф0 и активной Iaω1, опережающей поток на π/2 и определяемой потерями на гистерезис и вихревые токи в сердечнике.

При номинальном режиме значение I0w1 составляет примерно 1% от I1w1 (или I2w2). Поэтому размыкание вторичной цепи трансформатора тока приведёт к I0w1 = I1w1 , т.е. к резкому увеличению МДС, к большому росту U2 и перегреву трансформатора из-за возросших потерь вплоть до термического разрушения.

Трансформаторы тока характеризуются номинальной нагрузкой или номинальной мощностью

Sном =I2 Z н .

Не разрешается превышать Z н во избежании уменьшения размагничивающего действия вторичного тока I2w2 . В установках с большими токами короткого замыкания важно обеспечить электродинамическую и термическую стойкость трансформаторов тока.

 

Электродинамическая стойкость – это отношение амплитуды тока, которую он может выдержать без изменения своих электрических и механических свойств в течении одного полупериода, к амплитуде номинального тока.

Термическая стойкость – это отношение действующего (среднеквадратического) значения тока, которое трансформатор может выдержать в течении 1с без изменения своих свойств, к действующему значению номинального тока первичной обмотки.

Классы точности трансформаторов тока от 0,01 до 10,0. Могут изготавливаться как в стационарном, так и переносном исполнении, сухие или маслонаполненные.

Для уменьшения погрешностей трансформатора используют искусственное подмагничивание магнитопровода до значений напряженностей поля, при которых материал магнитопровода обладает максимальной магнитной проницаемостью. Это приводит к уменьшению I0w1. Практически , дополнительное намагничивание осуществляют за счёт прохождения тока I2 через дополнительную обмотку. Такие трансформаторы называют компенсированными.

Разновидностью измерительных трансформаторов тока являются измерительные клещи. Они позволяют измерять ток в силовой цепи без её разрыва. Клещи представляют собой разъёмный магнитопровод на шарнире, охватывающий измеряемую цепь. Вторичная обмотка включена на амперметр. Точность измерения не высока, но достаточно для оценочных измерений.