Основные характеристики подуровней

Значение l
Форма электронного облака
Подуровень s p d f
Число АО
Графическая схема подуровня
Значения ml –1, 0,+1 –2,–1, 0,+1,+2 –3,–2,–1, 0,+1,+2,+3

 

 

Электроны в атоме заполняют АО в соответствии со следующими принципами и правилами:

1. Принцип минимальной энергии: электроны в атоме стремятся занять в первую очередь те АО, которым соответствует наименьшее значение энергии электрона.

2. Правило Хунда (Гунда): в пределах одного подуровня электроны располагаются так, чтобы их суммарный спин был максимальным. Это означает, что в первую очередь электроны заполняют все свободные АО подуровня по одному, имея при этом одинаково направленные спины (их называют параллельными), а затем происходит заполнение этих АО вторыми (парными) электронами (их называют антипараллельными).

3. Принцип Паули: на одной АО может находиться не более двух электронов, отличающихся друг от друга значением ms ( ). Таким образом, максимальное число электронов на любом s-подуровне равно 2 (в электронной формуле соответствует записи ns2), p-подуровне – 6 (np6), d-подуровне – 10 [(n – 1)d10], f-подуровне – 14 [(n – 2)f 14].

2. Правило Клечковского: с ростом атомного номера элемента электроны размещаются на АО последовательно по мере возрастания суммы (n + l); при одинаковых значениях этой суммы раньше заполняется АО с меньшим значением числа n.

Например: 4s-орбиталь заполняется электронами раньше, чем 3d, потому что сумма (n + l) для 4s равна (4 + 0) = 4, а для 3d равна (3 + 2) = 5.

По правилу Клечковского заполнение энергетических уровней в основном соответствует следующему ряду: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p и т.д.

У некоторых элементов ПС заполнение АО электронами происходит с нарушением правила Клечковского. Например: в соответствии с данным правилом электронная формула 29Cu должна заканчиваться …4s23d 9, а на самом деле она имеет вид …4s13d10. Таким образом, один электрон с внешнего 4s подуровня перешел («провалился») на внутренний 3d и завершил его формирование (число электронов достигло максимума – 10 ). Этот и другие подобные факты связаны с тем, что полностью и наполовину заполненным подуровням соответствуют более выгодные с точки зрения энергии электронные конфигурации (они легче возникают и их сложнее разрушить).

При отрыве электронов от атома он превращается в положительно заряженный ион – катион, заряд которого равен числу отнятых электронов. Присоединение же электронов к атому приводит к образованию отрицательного иона – аниона, заряд которого равен количеству принятых электронов. При образовании катионов электроны в первую очередь покидают внешний энергетический уровень, а при образовании анионов размещаются на уровнях с соблюдением правила Клечковского.

Электроны внешнего энергетического уровня и отдельных подуровней второго (а для лантаноидов и актиноидов – третьего) от конца электронного слоя, на которых количество электронов не достигло максимального значения, называются валентными.

Элементы, в атомах которых валентными являются только s-орбитали, относятся к семейству s-элементов; элементы, в которых кроме s-орбиталей валентными являются также и p-орбитали, относятся к семейству p-элементов и т.д.

Способность атомов терять или присоединять электроны определяет химическую активность соответствующего элемента. Эту способность характеризуют при помощи следующих основных свойств атомов:

1. Энергия ионизации I – энергия, необходимая для удаления 1 моль электронов от 1 моль атомов какого либо элемента. Ее измеряют в кДж/моль или в электрон-вольтах (1 эВ = 1,6×10-19 Дж). Отрыву первого электрона от нейтрального атома соответствует первая энергия ионизации I1, отрыву второго, третьего и т. д. электронов соответствует вторая I2, третья I3 и т. д. энергии ионизации. При переходе от I1 к I2, I3 и т.д. энергия ионизации увеличивается. Наименьшее напряжение электрического поля, при котором происходит отрыв электрона, называется потенциалом ионизации. Его численное значение равно энергии ионизации в эВ.

Энергия ионизации характеризует восстановительную способность элемента. Чем меньше значение I, тем более сильным восстановителем является атом. В периодах с увеличением порядкового номера элемента (слева направо) I1 имеет общую тенденцию к росту. Однако, у электронных конфигураций, имеющих полностью или наполовину сформированные валентные подуровни, проявляются локальные максимумы значений I1.

Например, во втором периоде при переходе от N7: 1s22s22p3 к О8:1s22s22p4 порядковый номер увеличивается, а первая энергия ионизации уменьшается от 14,53 эВ у азота до 13,61 эВ у кислорода.

В общем случае локальные максимумы значений I1 следует ожидать у атомов, чья электронная формула заканчивается …ns2, …np3, …np6, …(n – 1)d5, …(n – 1)d10 и т.д.

Общие тенденции изменения значения I1 и некоторых других свойств атомов в периодах и группах приведены в табл.3.

Таблица 3