Увеличение количества и размера митохондрий

Митохондрии - это небольшие (2-3 мкм в длину и 0,7-1,0 мкм в поперечнике) образования округлой или удлинённой формы (рисунок 6.1). Митохондрии располагаются цепочками вдоль сократительных элементов мышечных волокон – миофибрилл. Внутреннее пространство митохондрий окружено двумя трёхслойными мембранами, причём от внутренней мембраны в полость митохондрий отходят гребни, располагающиеся параллельными рядами. Внутренняя полость гребней заполнена жидким раствором белка – матриксом. Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ – фосфолипидов [24].

 

 

 

Рисунок 6.1

Строение митохондрии. [по Яковлеву Н.Н., 1974 ]

Г – гребни, Ма – матрикс, ВМ – внутренняя мембрана

 

Митохондрии представляют собой как бы «завод по производству АТФ аэробным способом». Процесс окисления органических веществ в клетках тканей и органов с участием кислорода воздуха называется окислительным (или дыхательным) фосфорилированием. Дыхательное фосфорилирование – основной путь ресинтеза АТФ, в ходе которого окислению могут подвергаться самые различные соединения: углеводы (глюкоза), продукты их неполного окисления – молочная и пировиноградная кислоты, образующиеся из жиров жирные кислоты и глицерин, продукты расщепления белков – аминокислоты.

Ферменты, являющиеся катализаторами окислительных процессов, а также компоненты (переносчики) дыхательной цепи (химические вещества, осуществляющие транспорт электронов и протонов по дыхательной цепи) в определённом порядке располагаются на внутренних мембранах митохондрий. На внешней мембране и в матриксе также находится немало различных ферментов.

По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности энергопродукции. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в мышечных волокнах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания [11].

 

6.1.6 Уменьшение времени развёртывания механизма аэробного ресинтеза АТФ.

Время развёртыванияэто минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, т.е. для достижения максимальной мощности. Время развёртывания аэробного ресинтеза АТФ составляет 3-4 минуты (у хорошо тренированных спортсменов может быть около 1 минуты). Такое большое время развёртывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц[11].

На рисунке 6.2 приведены обобщённые литературные сведения об использовании кислорода в каскаде окислительного метаболизма и факторах, определяющих эффективность каждой из его ступеней [8].

 

 

Рисунок 6.2

Схема кислородного каскада в организме (по Верхошанскому Ю.В.,1988)

 

В результате газообмена в легких молекулы кислорода попадают в кровь, где в составе химического соединения с гемоглобином переносятся током крови к работающим мышцам. Затем кислород через стенки капилляров проникает внутрь мышечной клетки, пересекает внутриклеточное пространство (самостоятельно или с помощью мышечного белка миоглобина) и мембрану митохондрий, где и используется в химических реакциях окисления.

Понятно, что для статически работающих мышц-сгибателей пальцев проблема состоит как в доставке кислорода к работающим мышцам, так и в его использовании для ресинтеза АТФ в митохондриях.

Дыхательный аппарат обеспечивает снабжение организма кислородом и удаление из него углекислого газа. При подтягивании на перекладине к системе внешнего дыхания не предъявляется повышенных требований, как это происходит, например, в лыжных гонках. Когда спортсмен находится в хорошей форме, подтягивание в соревновательном темпе даже на четвёртой минуте выполняется с умеренными значениями частоты и глубины дыхания, за исключением, пожалуй, последних секунд выполнения упражнения, когда спортсмен предпринимает финишное ускорение. Организм получает из воздуха достаточное количество кислорода (кроме начального отрезка времени), но он не может своевременно доставить его по назначению и использовать с максимальной эффективностью.

В начале выполнении подтягиваний в работающих мышцах (в том числе и в мышцах-сгибателей пальцев) резко возрастает кислородный запрос по отношению к уровню покоя. Пока дыхание и кровообращение не успевают обеспечить адекватное снабжение работающих мышц кислородом, вероятно, используется резервный кислород, связанный с находящимся в мышечных клетках миоглобином. Для эффективной работы аэробного механизма энергообеспечения необходимо, чтобы все имеющиеся в распоряжении работающей мышцы капилляры находились в открытом состоянии, а объём кровотока через капиллярную сеть был максимально возможным. В противном случае после исчерпания миоглобинового резерва кислорода ресинтез АТФ длительное время (по меркам подтягивания) будет происходить за счёт гликолиза. Создание максимально возможного кровотока через работающие мышцы в кратчайшие сроки позволит сократить время развёртывания механизма аэробного окисления.

Поскольку лыжные гонки (наряду с подтягиванием и стрельбой входящие в состав зимнего полиатлона) оказывают существенное развивающее воздействие на возможности кислородотранспортной системы, скорее всего, нет необходимости в том, чтобы на тренировках по подтягиванию специально заниматься развитием возможностей системы внешнего дыхания, сердечно-сосудистой и кровеносной систем (за исключением развития капиллярной сети).

Существенное влияние на скорость развёртывания аэробного ресинтеза АТФ оказывают внутриклеточные факторы (рисунок 6.2).

Установка на автомашину более мощного двигателя даёт возможность во-первых, увеличить её максимальную скорость и, во-вторых, разогнаться до заданной скорости за меньшее время. Митохондрии – это по сути «энергетические установки» аэробного механизма ресинтеза АТФ. При увеличении количества и площади митохондрий происходит не только увеличение максимальной мощности аэробного ресинтеза АТФ, но и достижение заданного уровня мощности за меньшее время, т.е. уменьшение времени развёртывания.

С началом работы в мышцах происходит уменьшение концентрации АТФ и увеличение концентрации АДФ, что является сигналом к запуску как гликолиза, так и аэробного ресинтеза АТФ. При увеличении количества и размера митохондрий увеличивается и концентрация ферментов аэробного окисления (локализованных на их внутренних мембранах), что,вероятно, уменьшает время развёртывания механизма аэробного окисления и повышает шансы спортсмена на длительное поддержание надёжного хвата.

Миоглобин, находящийся в мышечных клетках, во-первых, в начале подтягиваний некоторое время поддерживает снабжение митохондрий кислородом и, во-вторых, облегчает и ускоряет транспорт кислорода к митохондриям, расположенным в глубине мышечного волокна. Это происходит за счёт так называемого "челночного" механизма передачи молекул кислорода от крови до митохондрий [9]. При более высоком содержании миоглобина (а значит и кислорода) в мышечных клетках гликолиз в начальный период работы будет протекать менее бурно.