Требования к оформлению контрольной работы 4 страница

и связано с угловым ускорением вала соотношением:

, (1)

где r — радиус вала.

Угловое ускорение вала выражается основным уравнением динамики вращающегося тела:

, (2)

где М — вращающий момент, действующий на вал; J — момент инерции вала. Рассматриваем вал как однородный цилиндр. Тогда его момент инерции относительно геометрической оси равен

J=1/2m1r2.

Вращающий момент М, действующий на вал, равен произведению силы натяжения Т шнура на радиус вала: М=Тr.

Силу натяжения шнура найдем из следующих соображений. На гирю действуют две силы: сила тяжести , направленная вниз, и сила натяжения шнура, направленная вверх. Равнодействующая этих сил вызывает равноускоренное движение гири. По второму закону Ньютона, m2g – T=m2a, откуда T=m2(g – а). Таким образом, вращающий момент M=m2(g—а)r.

Подставив в формулу (2) полученные выражения М и J, найдем угловое ускорение вала:

Для определения линейного ускорения гири подставим это выражение в формулу (1). Получим

,

откуда

.

 

Пример 15. Через блок в виде диска, имеющий массу m=80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1=100 г и m2=200 г (рис. 11). С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.

Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести , направленная вниз, и сила натяжения нити, направленная вверх.

Так как вектор ускорения груза m1 направлен вверх, то T1>m1g. Равнодействующая этих сил вызывает равноускоренное движение и, по второму закону Ньютона, равна T1т1g=т1а, откуда:

T1=m1g+m1a. (1)

Вектор ускорения груза т2 направлен вниз; следовательно, T2<m2g. Запишем формулу второго закона для этого груза:

m2gT2=m2a, откуда

T2=m2g – m2а. (2)

Согласно основному закону динамики вращательного движения, вращающий момент М, приложенный к диску,равен произведению момента инерции J диска на его угловое ускорение :

M=J . (3)

Определим вращающий момент. Силы натяжения нитей действуют не только на грузы, но и на диск. По третьему закону Ньютона, силы и , приложенные к ободу диска, равны соответственно силам T1 и Т2, но по направлению им противоположны. При движении грузов диск ускоренно вращается по часовой стрелке; следовательно, > . Вращающий момент, приложенный к диску, равен произведению разности этих сил на плечо, равное радиусу диска, т. е. M=( )r. Момент инерции диска J=mr2/2, угловое ускорение связано с линейным ускорением грузов соотношением . Подставив в формулу (3) выражения М, J и , получим

( )r =

откуда

=(т/2)а.

Так как =T1 и =Т2, то можно заменить силы и вы­ражениями по формулам (1) и (2), тогда:

m2g – m2a – m1g – m1a=(m/2)a, или(m2—m1) g=(m2+m1+m/2)a

откуда:

(4)

Отношение масс в правой части формулы (4) есть величина безразмерная. Поэтому значения масс m1, m2 и m можно выразить в граммах, как они даны в условии задачи. После подстановки получим:

 

Пример 16. Маховик в виде диска массой m=50 кг и радиусом r =20 см был раскручен до частоты вращения 1=480 мин-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент М сил трения, считая его постоянным для двух случаев: 1) маховик остановился через t=50 с; 2) маховик до полной остановки сделал N=200 оборотов.

Решение. 1.По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента:

M t=J — J ,

где J — момент инерции маховика; и — начальная и конечная угловые скорости. Так как =0 и t=t , то Mt= – J , откуда:

M= – J /t. (1)

Момент инерции диска относительно его геометрической оси равен J=1/2mr2. Подставив это выражение в формулу (1), найдем

M= – mr2 /(2t). (2)

Выразив угловую скорость через частоту вращения 1 и произведя вычисления по формуле (2), найдем:

М= – 1 Н·м.

2. В условии задачи дано число оборотов, сделанных махови­ком до остановки, т. е. его угловое перемещение. Поэтому приме­ним формулу, выражающую связь работы с изменением кинетиче­ской энергии:

или, учтя, что ,

(3)

Работа при вращательном движении определяется по формуле A=Mj. Подставив выражения работы и момента инерции диска в формулу (3), получим:

M = – mr2 /4.

Отсюда момент силы трения:

М=mr2 /4 . (4)

Угол поворота j=2 N=2·3,14·200 рад=1256 рад. Произведя вычисления по формуле (4), получим:

М= – 1 Н·м.

Знак минус показывает, что момент силы трения оказывает тормозящее действие.

 

Пример 17. Платформа в виде диска радиусом R= 1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с часто­той =10 мин-1. В центре платформы стоит человек массой т2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Решение. По закону сохранения момента импульса,

(1)

где J1 — момент инерции платформы; J2 момент инерции человека, стоящего в центре платформы; — угловая скорость платформы с человеком, стоящим в ее центре; J2' — момент инерции человека, стоящего на краю платформы; — угловая скорость платформы с человеком, стоящим на ее краю.

Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением:

. (2)

Определив из уравнения (1) и подставив полученное выражение в формулу (2), будем иметь:

v=(J1+J2) R/(J1+J'2). (3)

Момент инерции платформы рассчитываем как для диска; следовательно, J1=112m1R2. Момент инерции человека рассчитываем как для материальной точки. Поэтому J2=0, J'2=m2R2. Угловая скорость платформы до перехода человека равна .

Заменив в формуле (3) величины J1, J2, J'2. и их выражениями, получим:

Сделав подстановку значений т1, т2, , R и , найдем линейную скорость человека:

Пример 18. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения 1=0,5 c-1. Момент инерции jo тела человека относительно оси вращения равен 1,6 кг·м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1=l,6 м. Опре­делить частоту вращения 2, скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Решение. Человек, держащий гири (рис. 12), составляет вместе со скамьей замкнутую механическую систему, поэтому момент импульса J этой системы должен иметь постоянное значение. Следовательно, для данного случая

J1 = J2 ,

где J и — момент инерции тела человека и угловая скорость скамьи и человека с вытянутыми руками; J2 и — момент инерции тела человека и угловая скорость скамьи и человека с опу­щенными руками. Отсюда:

= (J1/J2) .

Выразив в этом уравнении угловые скорости и через частоты вращения 1 и 2 ( =2 ) и сократив на 2 , получим:

2=(J1/J2) 1. (1)

Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека J0 и момента инерции гирь в руках человека. Так как размер гирь много меньше расстояния их от оси вращения, то момент инерции гирь можно определить по формуле момента инерции материальной точки: J=mr2. Следовательно,

J1=J0+2m(l1/2)2;

где т — масса каждой из гирь; l1 и l2. — первоначальное и конечное расстояние между гирями. Подставив выражения J1 и J2 в уравнение (1), получим:

. (2)

Выполнив вычисления по формуле (2), найдем

2=1,18 с-1.

 

Пример 19. Стержень длиной l=1,5 м и массой М=10 кг может вращаться вокруг неподвижной оси, проходящей через верх­ний конец стержня (рис. 13). В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью vo=500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и пуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Рассмотрим подробнее явления, происходящие при ударе. Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с угловой скоростью и сообщает ему кинетическую энергию

(1)

где — момент инерции стержня относительно оси вращения.

Затем стержень поворачивается на искомый угол , причем центр масс его поднимается на высоту . В отклоненном положении стержень будет обладать потенциальной энергией

(2)

Потенциальная энергия получена за счет кинетической энергии и равна ей по закону сохранения энергии. Приравняв правые части равенств (1) и (2), получим

Отсюда

.

Подставив в эту формулу выражение для момента инерции стержня , получим

(3)

Чтобы из выражения (3) найти , необходимо предварительно определить значение . В момент удара на пулю и на стержень действуют силы тяжести, линии действия которых проходят через ось вращения и направлены вертикально вниз. Моменты этих сил относительно оси вращения равны нулю. Поэтому при ударе пули о стержень будет справедлив закон сохранения момента импульса. В начальный момент удара угловая скорость стержня , поэтому его момент импульса . Пуля коснулась стержня и начала углубляться в стержень, сообщая ему угловое ускорение и участвуя во вращении стержня около оси. Начальный момент импульса пули , где — расстояние точки попадания от оси вращения. В конечный момент удара стержень имел угловую скорость , а пуля — линейную скорость , равную линейной скорости точек стержня, находящихся на расстоянии от оси вращения. Так как , то конечный момент импульса пули .

Применив закон сохранения импульса, можем написать:

, или ,

откуда:

, (4)

где — момент инерции стержня.

Если учесть, что в (4) , а также что , то после несложных преобразований получим:

(5)

Подставив числовые значения величин в (5), найдем

рад = 0,5 рад.

По (3) получим:

Следовательно, =9°20'

 

Пример 20. Из пружинного пистолета был произведен выстрел вертикально вверх. Определить высоту h, на которую поднимается пуля массой m = 20 г, если пружина жесткостью k = 196 Н/м была сжата перед выстрелом на х = 10 см. Массой пружины пренебречь.

Решение. Система пуля — Земля (вместе с пистолетом) яв­ляется замкнутой системой, в которой действуют консервативные силы — силы упругости и силы тяготения. Поэтому для решения задачи можно применить закон сохранения энергии в механике. Согласно этому закону, полная механическая энергия системы в начальном состоянии (в данном случае перед выстрелом) равна полной энергии в конечном состоянии (когда пуля поднялась на высоту h), т. е.

= , или , (1)

где и — кинетические энергии системы в начальном и конечном состояниях; и — потенциальные энергии в тех же состояниях.

Так как кинетические энергии пули в начальном и конечном состояниях равны нулю, то равенство (1) примет вид

= . (2)

Если потенциальную энергию в поле тяготения Земли на ее поверхность принять равной нулю, то энергия системы в начальном состоянии равна потенциальной энергии сжатой пружины, т. е.

, а в конечном состоянии — потенциальной энергий пули на высоте , т. е. .

Подставив приведенные выражения и в формулу (2), найдем

; .

Произведя вычисления по последней формуле, получим h=5 м.

Пример 21. Точка совершает колебания по закону , где А=2 см. Определить начальную фазу φ, если

x(0)= см и (0)<0. Построить векторную диаграмму для момента t=0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t=0 через начальную фазу:

.

Отсюда найдем начальную фазу:

.

Подставим в это выражение заданные значения x(0) и А: . Значению аргумента удовлетворяют два значения угла:

и .

Для того чтобы решить, какое из этих значений угла φ удовлетворяет еще и условию , найдем сначала :

.

Подставив в это выражение значение t=0 и поочередно значения начальных фаз и , найдем:

; .

Так как всегда A>0 и ω>0, то условию удовлетворяет только первое значение начальной фазы. Таким образом, искомая начальная фаза .