Восстановление дискретизированного сигнала с помощью ряда Котельникова

Согласно теореме Котельникова непрерывный сигнал , в спектре которого не содержится частот выше , полностью определяется последовательностью своих мгновенных значений, отсчитанных через интервал времени и может быть представлен рядом

.

(2)

Ряд(2) называют рядом Котельникова. Если представить (2) в следующем виде:

,

(3)

,

(4)

то (в соответствии с выражением (1) - система базисных функций, а - коэффициенты ряда.
Система базисных функций ортогональна на интервале времени , т.е.

(5)

Выражение(5) – это выражение для энергии базисной функции. При выражение (5) соответствует взаимной энергии. Т.к. взаимная энергия равна нулю, то система базисных функций ортогональна.
Каждая из базисных функций сдвинута относительно ближайшей функции и на время

,

(6)

соответствующее временному интервалу дискретизации между двумя отсчетными точками, которые иногда называют интервалом Найквиста.
Функция , изображенная на рис. 1. обладает свойством


(7)

где - любое целое положительное или отрицательное число.

Рис. 1. График базисной функции


Рис. 2 поясняет аппроксимацию непрерывного сигнала рядом Котельникова. На графике построены три члена ряда (2), соответствующие отсчетам функции в моменты времени , , . При суммировании этих членов ряда в точках отсчетов ( , , ) получаем точные значения сигнала . Следовательно, в отсчетные моменты времени непрерывный сигнал аппроксимируется точно независимо от числа взятых отсчетов, т.е. от числа членов ряда Котельникова. Между отсчетами ( ) сигнал аппроксимируется точно только в том случае, когда суммируются все члены ряда (2) и соблюдается условие сформулированное в теореме Котельникова.


Рис. 2. Аппроксимация непрерывного сигнала рядом Котельникова


Согласно формуле (2) ряд Котельникова может использоваться для восстановления непрерывного сигнала без погрешностей. Однако в реальной ситуации погрешности возникают. Рассмотрим их источники.
На практике ряд Котельникова ограничен. Сигнал, ограниченный во времени приближенно описывается рядом (8), состоящим из конечного числа членов:

.

(8)

При суммировании членов ряда (8) сигнал воспроизводится точно только в точках отсчетов . В промежутках между отсчетами возникает погрешность аппроксимации, которая возникает у краев интервала , где отброшенные члены ряда имеют наибольшее значение.
Вторым источником погрешности является то, что реальные сигналы ограничены во времени и обладают, следовательно, неограниченным по частоте спектром. Однако вне некоторой полосы частот составляющие реальных сигналов обладают малой энергией по сравнению с энергией сигнала . Такие сигналы можно приближенно считать ограниченными по времени и по частоте и представлять рядом Котельникова. Это приближение является источником погрешности.

Рис. 3. Приближенное представление сигнала, ограниченного по времени и частоте


Третьим источником погрешности является неидеальность дискретизации, заключающаяся в том, что значения соответствует не моменту времени (функция дискретизации – последовательность дельта-функций), а небольшому интервалу с длительностью (функция дискретизации – последовательность прямоугольных импульсов).

 

 

Восстановление дискретизированного сигнала с помощью степенных полиномов, погрешности аппроксимации, определение частоты дискретизации. Виды аппроксимации, погрешность аппроксимации

При аппроксимации сигнал на каждом участке между его известными значениями заменяется кривой, изменяющейся по определенному закону:
· горизонтальной прямой при ступенчатой аппроксимации;
·отрезком наклонной прямой при кусочно-линейной аппроксимации;
· участком параболы при параболической аппроксимации.

Разность между аппроксимированным, т.е. восстановленными и действительными промежуточными значениями функции называют погрешностью аппроксимации.

Таким образом погрешность аппроксимации определяется выражением

(9)

Погрешность от аппроксимации зависит от:
· скорости изменения ;
· способа аппроксимации;
· интервала дискретизации.
Погрешность аппроксимации увеличивается с увеличением скорости изменения сигнала, уменьшается с усложнением вида аппроксимации, увеличивается с увеличением интервала дискретизации. Примеры аппроксимации приведены на рис. 4.

 

 

Рис. 4. Примеры аппроксимации: а) исходный сигнал; б) дискретизированный сигнал; в) сигнал, восстановленный с помощью ступенчатой аппроксимации; д) сигнал, восстановленный с помощью кусочно-линейной аппроксимации; г), е) – графики погрешностей аппроксимации.

 

Ступенчатая аппроксимация


При ступенчатой аппроксимации используется степенной полином нулевого порядка, т.е. аппроксимация производится отрезком горизонтальной прямой, начинающимся с момента измерения, предшествующему интервалу восстановления.

.

(10)

Максимальное значение погрешности от аппроксимации в этом случае будет на наиболее крутом участке функции, где первая производная достигает наибольшего значения.

.

(11)

Выражение (11) может быть использовано для расчета необходимой частоты дискретизации при заданной модели сигнала.

Пример 1
Если принять для расчета модель Берштейна, которая справедлива для стационарных случайных функций с равномерным спектром в полосе частот сигнала от до , то , где - максимальное значение амплитуды сигнала.
Тогда , а приведенная погрешность аппроксимации равна

.


Тогда при заданной погрешности аппроксимации частота дискретизации равна

.


Т.е., при .
Таким образом при использовании модели Бернштейна при погрешности аппроксимации 1% частота дискретизации должна быть в 628 раз больше частоты сигнала.
Пример 2
Считают, что использование модели Бернштейна приводит к завышенным требованиям к частоте дискретизации. Если принять более реальную модель, когда амплитуды гармонических составляющих с номером имеют амплитуду, обратно пропорциональную их номеру, то выражение для частоты дискретизации имеет вид:

,


где - частота первой гармоники сигнала.

Для сравнения разных видов аппроксимации будем находить необходимую частоту дискретизации для одной модели сигнала – синусоидальной.
При синусоидальной модели сигнала

.

(12)

Тогда частота дискретизации равна

.

(13)

При погрешности аппроксимации и синусоидальной модели сигнала требования к необходимой частоте дискретизации выглядит следующим образом