Представление в реляционной схеме взаимно исключающих связей

Существуют два способа формирования схемы реляционной БД при наличии взаимно исключающих связей (имеются в виду связи «один ко многим», причем конец связи «многие» находится на стороне сущности, для которой связи являются взаимно исключающими):

  • общее хранение внешних ключей;
  • (b) раздельное хранение внешних ключей.

Понятно, что если имеются взаимно исключающие связи упомянутой категории, то в таблице, соответствующей сущности, для которой связи являются взаимно исключающими, необходимо хранить внешние ключи. Если внешние ключи всех потенциально связанных таблиц имеют общий формат, то можно применить способ (a), т. е. создать два столбца: идентификатор связи и идентификатор сущности (возможно, составной). Столбец идентификатора связи используется для различения связей, покрываемых дугой исключения. В столбце (столбцах) идентификатора сущности хранятся значения уникального идентификатора сущности на дальнем конце соответствующей связи.

Если результирующие внешние ключи не относятся к одному домену, то приходится прибегать к использованию способа (b), т. е. создавать для каждой связи, покрываемой дугой исключения, явные столбцы внешних ключей; все эти столбцы могут содержать неопределенные значения.

Преимущество подхода (a) состоит в том, что в таблице, соответствующей сущности, появляется всего два дополнительных столбца. Очевидным недостатком является усложнение выполнения операции соединения: чтобы воспользоваться для соединения одной из альтернативных связей, нужно сначала произвести ограничение таблицы в соответствии с нужным значением столбца, содержащего идентификаторы связей.

При использовании подхода (b) соединения являются явными (и естественными). Недостаток состоит в том, что требуется иметь столько столбцов, сколько имеется альтернативных связей. Кроме того, в каждом из таких столбцов будет содержаться много неопределенных значений, хранение которых потенциально может привести к серьезным накладным расходам внешней памяти.

Рис. 40. Возможные модификации ER-диаграмм, позволяющие избежать взаимно исключающих связей


Рис. 9.14. Возможные модификации ER-диаграмм, позволяющие избежать взаимно исключающих связей

Модификация, показанная на Рис. 40(b), основана на том наблюдении, что коль скоро связи являются альтернативными, то они разделяют множество экземпляров сущности A на два или более непересекающихся подмножества, которые могут лежать в основе определения подтипов A1 и A2. Это хороший вариант, если такие подтипы могут пригодиться еще для чего-нибудь. Допустим, в случае взаимно исключающей связи, представленной на Рис. 38, у исправных и неисправных самолетов имеются несовпадающие множества атрибутов (скажем, у типа сущности ИСПРАВНЫЕ САМОЛЕТЫ имеется атрибут дата завершения гарантийного срока, а у типа сущности НЕИСПРАВНЫЕ САМОЛЕТЫ – атрибут тип неисправности). С другой стороны, как отмечалось в предыдущем разделе, для использования этого подхода требуется возможность динамического изменения типа существующего экземпляра.

Модификация, показанная на Рис. 40 (с), основана на том наблюдении, что коль скоро типы сущности B и C участвуют в альтернативной связи, то, по всей видимости, у этих сущностей имеется что-то общее. Возможно, их было бы правильнее определять как подтипы некоторого общего типа сущности. Заметим, что пример с Рис. 38 явно демонстрирует, что далеко не всегда типы сущности, участвующие в альтернативной связи, обладают общими чертами. Создание общего супертипа для типов сущности ПИЛОТ и АВИАРЕМОНТНОЕ ПРЕДПРИЯТИЕ представляется весьма странной идеей.

Виды нотаций ER-диаграмм

Конечно, представленный выше способ представления ER-диаграмм не является единственным. В этом подразделе мы представляем несколько других нотаций.

Метод Баркера

Нотация ER-диаграммы была впервые введена П. Ченом (Chen) и получила дальнейшее развитие в работах Баркера. Метод Баркера будет излагаться на примере предметной области компании по торговле автомобилями.

Сущность (Entity) - реальный либо воображаемый объект, имеющий существенное значение для рассматриваемой предметной области, информация о котором подлежит хранению Рис. 41.

Рис. 41. Графическое изображение сущности

Каждая сущность должна обладать уникальным идентификатором. Каждый экземпляр сущности должен однозначно идентифицироваться и отличаться от всех других экземпляров данного типа сущности. Каждая сущность должна обладать некоторыми свойствами:

· каждая сущность должна иметь уникальное имя, и к одному и тому же имени должна всегда применяться одна и та же интерпретация. Одна и та же интерпретация не может применяться к различным именам, если только они не являются псевдонимами;

· сущность обладает одним или несколькими атрибутами, которые либо принадлежат сущности, либо наследуются через связь;

· сущность обладает одним или несколькими атрибутами, которые однозначно идентифицируют каждый экземпляр сущности;

· каждая сущность может обладать любым количеством связей с другими сущностями модели.

Следующим шагом моделирования является идентификация связей.

Связь (Relationship)- поименованная ассоциация между двумя сущностями, значимая для рассматриваемой предметной области. Связь - это ассоциация между сущностями, при которой, как правило, каждый экземпляр одной сущности, называемой родительской сущностью, ассоциирован с произвольным (в том числе нулевым) количеством экземпляров второй сущности, называемой сущностью-потомком, а каждый экземпляр сущности-потомка ассоциирован в точности с одним экземпляром сущности-родителя. Таким образом, экземпляр сущности-потомка может существовать только при существовании сущности родителя.

Связи может даваться имя, выражаемое грамматическим оборотом глагола и помещаемое возле линии связи. Имя каждой связи между двумя данными сущностями должно быть уникальным, но имена связей в модели не обязаны быть уникальными. Имя связи всегда формируется с точки зрения родителя, так что предложение может быть образовано соединением имени сущности-родителя, имени связи, выражения степени и имени сущности-потомка.

Например, связь продавца с контрактом может быть выражена следующим образом:

· продавец может получить вознаграждение за 1 или более контрактов;

· контракт должен быть инициирован ровно одним продавцом.

Степень связи и обязательность графически изображаются следующим образом (Рис. 42).

Рис. 42.

Таким образом, 2 предложения, описывающие связь продавца с контрактом, графически будут выражены следующим образом (Рис. 43).

Рис. 43.

Описав также связи остальных сущностей, получим следующую схему (Рис. 44).

Рис. 44.

 

Последним шагом моделирования является идентификация атрибутов.

Атрибут - любая характеристика сущности, значимая для рассматриваемой предметной области и предназначенная для квалификации, идентификации, классификации, количественной характеристики или выражения состояния сущности. Атрибут представляет тип характеристик или свойств, ассоциированных со множеством реальных или абстрактных объектов (людей, мест, событий, состояний, идей, пар предметов и т.д.).

Атрибут может быть либо обязательным, либо необязательным (Рис. 45). Обязательность означает, что атрибут не может принимать неопределенных значений (null values). Атрибут может быть либо описательным (т.е. обычным дескриптором сущности), либо входить в состав уникального идентификатора (первичного ключа).

Уникальный идентификатор - это атрибут или совокупность атрибутов и/или связей, предназначенная для уникальной идентификации каждого экземпляра данного типа сущности. В случае полной идентификации каждый экземпляр данного типа сущности полностью идентифицируется своими собственными ключевыми атрибутами, в противном случае в его идентификации участвуют также атрибуты другой сущности-родителя (Рис. 46).

Рис. 45.

Рис. 46.

Каждый атрибут идентифицируется уникальным именем, выражаемым грамматическим оборотом существительного, описывающим представляемую атрибутом характеристику. Атрибуты изображаются в виде списка имен внутри блока ассоциированной сущности, причем каждый атрибут занимает отдельную строку. Атрибуты, определяющие первичный ключ, размещаются наверху списка и выделяются знаком "#".

Каждая сущность должна обладать хотя бы одним возможным ключом. Возможный ключ сущности - это один или несколько атрибутов, чьи значения однозначно определяют каждый экземпляр сущности. При существовании нескольких возможных ключей один из них обозначается в качестве первичного ключа, а остальные - как альтернативные ключи.

С учетом имеющейся информации дополним построенную ранее диаграмму (Рис. 47).

Помимо перечисленных основных конструкций модель данных может содержать ряд дополнительных.

Подтипы и супертипы: одна сущность является обобщающим понятием для группы подобных сущностей (Рис. 48).

Взаимно исключающие связи: каждый экземпляр сущности участвует только в одной связи из группы взаимно исключающих связей (Рис. 49).

Рис. 47.

Рис. 48. Подтипы и супертипы

Рис. 49. Взаимно исключающие связи

Рекурсивная связь: сущность может быть связана сама с собой (Рис. 50).

Рис. 50. Рекурсивная связь

 

Неперемещаемые (non-transferable) связи: экземпляр сущности не может быть перенесен из одного экземпляра связи в другой (Рис. 51).

Рис. 51. Неперемещаемая связь

Методология IDEF1X

Метод IDEF1, разработанный Т.Рэмей (T.Ramey), также основан на подходе П.Чена и позволяет построить модель данных, эквивалентную реляционной модели в третьей нормальной форме. В настоящее время на основе совершенствования методологии IDEF1 создана ее новая версия - методология IDEF1X. IDEF1X разработана с учетом таких требований, как простота изучения и возможность автоматизации. IDEF1X-диаграммы используются рядом распространенных CASE-средств (в частности, ERwin).

Сущность в методологии IDEF1X является независимой от идентификаторов или просто независимой, если каждый экземпляр сущности может быть однозначно идентифицирован без определения его отношений с другими сущностями. Сущность называется зависимой от идентификаторов или просто зависимой, если однозначная идентификация экземпляра сущности зависит от его отношения к другой сущности (Рис. 52).

Рис. 52. Сущности

Каждой сущности присваивается уникальное имя и номер, разделяемые косой чертой "/" и помещаемые над блоком.

Связь может дополнительно определяться с помощью указания степени или мощности (количества экземпляров сущности-потомка, которое может существовать для каждого экземпляра сущности-родителя). В IDEF1X могут быть выражены следующие мощности связей:

· каждый экземпляр сущности-родителя может иметь ноль, один или более связанных с ним экземпляров сущности-потомка;

· каждый экземпляр сущности-родителя должен иметь не менее одного связанного с ним экземпляра сущности-потомка;

· каждый экземпляр сущности-родителя должен иметь не более одного связанного с ним экземпляра сущности-потомка;

· каждый экземпляр сущности-родителя связан с некоторым фиксированным числом экземпляров сущности-потомка.

Если экземпляр сущности-потомка однозначно определяется своей связью с сущностью-родителем, то связь называется идентифицирующей, в противном случае - неидентифицирующей.

Связь изображается линией, проводимой между сущностью-родителем и сущностью-потомком с точкой на конце линии у сущности-потомка. Мощность связи обозначается как показано на Рис. 53 (мощность по умолчанию - N).

Рис. 53. Мощность связи

Идентифицирующая связь между сущностью-родителем и сущностью-потомком изображается сплошной линией (Рис. 54). Сущность-потомок в идентифицирующей связи является зависимой от идентификатора сущностью. Сущность-родитель в идентифицирующей связи может быть как независимой, так и зависимой от идентификатора сущностью (это определяется ее связями с другими сущностями).

Рис. 54. Идентифицирующая связь

Пунктирная линия изображает неидентифицирующую связь (Рис. 55). Сущность-потомок в неидентифицирующей связи будет независимой от идентификатора, если она не является также сущностью-потомком в какой-либо идентифицирующей связи.

Рис. 55. Неидентифицирующая связь

Атрибуты изображаются в виде списка имен внутри блока сущности. Атрибуты, определяющие первичный ключ, размещаются наверху списка и отделяются от других атрибутов горизонтальной чертой (Рис. 56).

Рис. 56. Атрибуты и первичные ключи

Сущности могут иметь также внешние ключи (Foreign Key), которые могут использоваться в качестве части или целого первичного ключа или неключевого атрибута. Внешний ключ изображается с помощью помещения внутрь блока сущности имен атрибутов, после которых следуют буквы FK в скобках (Рис. 57).

Рис. 57. Примеры внешних ключей

Заключение

Основной целью данной лекции было ознакомление с семантическими моделями данных на примере упрощенного варианта ER-модели. Представленный вариант ER-модели, с одной стороны, является достаточно развитым, чтобы можно было почувствовать общую специфику семантических моделей данных, а с другой стороны, не перегружен деталями и излишними понятиями, затрудняющими общее понимание подхода.

С практической точки зрения наибольшую пользу могут принести рассмотренные приемы перехода от ER-диаграмм к схеме реляционной базы данных. Особенно могут пригодиться рекомендации по представлению в реляционной схеме связей «многие ко многим», подтипов и супертипов сущности и взаимно исключающих связей.

2.5. Проектирование реляционных баз данных с использованием семантических моделей: диаграммы классов языка UML

Общие сведения об UML

Языку объектно-ориентированного моделирования UML (Unified Modeling Language) посвящено великое множество книг, многие из которых переведены на русский язык (а некоторые и написаны российскими авторами). Язык UML разработан и развивается консорциумом OMG (Object Management Group) и имеет много общего с объектными моделями, на которых основана технология распределенных объектных систем CORBA, и объектной моделью ODMG (Object Data Management Group).

UML позволяет моделировать разные виды систем: чисто программные, чисто аппаратные, программно-аппаратные, смешанные, явно включающие деятельность людей и т. д. Даже если бы мы ограничились возможностями использования UML для проектирования программных информационных систем, это слишком далеко увело бы нас от основной темы курса.

Но, помимо прочего, язык UML активно применяется для проектирования реляционных БД. Для этого используется небольшая часть языка (диаграммы классов), да и то не в полном объеме. С точки зрения проектирования реляционных БД модельные возможности не слишком отличаются от возможностей ER-диаграмм. Но все же мы кратко опишем диаграммы классов UML, поскольку их использование при проектировании реляционных БД позволяет оставаться в общем контексте UML и применять другие виды диаграмм для проектирования приложений баз данных.

Основные понятия диаграмм классов UML

Определение: Диаграмма классов

Диаграммой классов в терминологии UML называется диаграмма, на которой показан набор классов (и некоторых других сущностей, не имеющих явного отношения к проектированию БД), а также связей между этими классами. Кроме того, диаграмма классов может включать комментарии и ограничения. Ограничения могут неформально задаваться на естественном языке или же могут формулироваться на языке объектных ограничений OCL (Object Constraints Language). Чуть позже мы обсудим эту тему более подробно.