АГРЕГАТЫ КОЛЕСНЫХ АВТОМОБИЛЕЙ

 

Двигатели

В целях наибольшей унификации производства и снабжения запасными частями на современных автомобилях повышенной проходимости применяются двигатели обычных автомобилей соответствующей грузоподъемности. Однако в ряде случаев для повышения тяговых качеств автомобилей двигатели имеют повышенные мощность и максимальный крутящий момент. Для повышения надежности работы автомобилей в плохих дорожных условиях иногда двигатели этих автомобилей имеют более эффективные системы охлаждения и смазки и оборудуются устройствами для облегчения их пуска.

Коробки передач

На современных грузовых автомобилях повышенной проходимости преимущественное распространение имеют механические многоступенчатые коробки передач с шестернями постоянного зацепления и синхронизацией переключения передач.

Назначение коробки передач - изменять силу тяги, скорость и направление движения автомобиля.

Раздаточная коробка предназначена для распределения крутящего момента между несколькими ведущими мостами полноприводных (многоприводных) автомобилей, которые имеют высокие опорно-сцепные качества, что достигается путем оптимального распределения массы на ведущие колеса.

Требования, предъявляемые к раздаточным коробкам. Они должны:

• распределять крутящий момент по ведущим мостам таким образом, чтобы обеспечивалась наилучшая проходимость автомобиля;

• иметь возможность создания больших передаточных чисел для преодоления повышенных сопротивлений движению автомобиля;

• иметь устройства, предотвращающие перегрузку деталей трансмиссии при включении демультипликатора;

• не создавать повышенный уровень шума;

• иметь высокий КПД.

Классификация раздаточных коробок по типу привода. Если все выходные валы раздаточной коробки имеют жесткую механическую связь, привод называется блокированным. Если связь выходных валов раздаточной коробки обеспечивается через дифференциал, привод называется дифференциальным.

Карданная передача

Механизм, состоящий из одного или нескольких карданных валов и карданных шарниров и предназначенный для передачи крутящего момента между агрегатами, оси которых не совпадают и могут изменять свое положение, называется карданной передачей. Для компенсации изменения расстояния между агрегатами трансмиссии в карданной передаче используют подвижные в осевом направлении шлицевые муфты.

Требования, предъявляемые к карданным передачам:

• возможность передачи крутящего момента под большим углом (до 45°);

• передача крутящего момента не должна сопровождаться большими дополнительными динамическими нагрузками в трансмиссии;

• при любых условиях эксплуатации должен обеспечиваться высокий КПД передачи.

Карданные шарниры можно разделить:

• по кинематике на синхронные (равные угловые скорости) и асинхронные (неравные угловые скорости);

• по конструкции на полные, полукарданные — жесткие (угол до 2°) и упругие (угол до 12°).

Дифференциалы

Дифференциал предназначен для распределения крутящего момента между ведущими колесами и позволяет вращаться колесам с разными угловыми скоростями.

Дифференциалы по конструкции делятся на:

- шестеренчатые,

- кулачковые,

- червячные.

Шестеренчатые дифференциалы по типу используемых зубчатых колес могут быть коническими и цилиндрическими.

По крутящим моментам на выходных валах дифференциалы делятся на симметричные (крутящий момент поровну распределяется между выходными валами) и несимметричные.

По распределению крутящего момента дифференциалы могут быть:

• с постоянным распределением — конические и цилиндрические;

• с непостоянным распределением — с принудительной блокировкой и самоблокирующиеся, а также пульсирующие, свободного хода (обгонные) и повышенного трения.

В основном применяют шестеренчатые и кулачковые дифференциалы.

Шестеренчатый дифференциал — планетарный механизм с двумя степенями свободы. Симметричный конический дифференциал состоит из следующих элементов:

• корпуса (две чашки левая и правая);

• сателлитных зубчатых колес (два или четыре);

• ось сателлитных зубчатых колес (крестовина с шипами осей);

• двух полуосевых зубчатых колес.

Кулачковый дифференциал повышенного трения автомобиля ГАЗ-66-11 состоит из следующих элементов:

• корпуса дифференциала, состоящего из левой и правой чашек;

• наружной звездочки с внутренним кулачковым профилем, которая передает крутящий момент на правую полуось;

• внутренней звездочки с двумя рядами кулачковых профилей на наружной поверхности, которая передает крутящий момент на левую полуось;

• сепаратора, выполненного как одно целое с левой чашкой коробки дифференциала, с двумя рядами отверстий под сухари;

• двадцати четырех сухарей, расположенных в шахматном порядке в отверстиях сепаратора.

Межосевой дифференциал автомобиля КамАЗ-5320 распределяет крутящий момент между промежуточным (средним) и задним мостами. Картер межосевого дифференциала прикреплен к картеру главной передачи промежуточного моста. Корпус дифференциала состоит из двух чашек, соединенных между собой болтами. Внутри помещен дифференциальный механизм, в который входят сателлитные зубчатые колеса с крестовиной, конические зубчатые колеса привода промежуточного моста и привода заднего моста. Зубчатое колесо привода промежуточного моста шлицами постоянно соединено с коническим зубчатым колесом главной передачи промежуточного моста. Зубчатое колесо привода промежуточного моста имеет наружные зубья, с которыми в постоянном зацеплении находятся внутренняя зубчатая муфта и муфта блокировки дифференциала. Передвигая муфту в зацепление с наружными зубьями зубчатого колеса привода промежуточного моста (соединяется с корпусом дифференциала), осуществляется блокировка дифференциала. Включение механизма блокировки осуществляется с помощью пневмоцилиндра с мембраной и пружиной, которые перемещают шток с вилкой зубчатой муфты включения блокировки.

Мосты. Ведущий мост

В наиболее распространенной конструкции ведущего моста балка выполняет одновременно функции картера (внутри балки располагаются главная передача, дифференциал и полуоси привода ведущих колес). Балки мостов бывают трех видов:

• разъемные;

• цельные;

• типа «банджо».

Разъемная балка состоит из двух половин, соединенных болтами. Кожухи приводных валов, так называемые полуосевые чулки, запрессованы в литые средние части балки и дополнительно соединены с ним, как правило, с помощью заклепок или электрозаклепок. Средняя часть балки образует картер главной передачи с соответствующими гнездами под подшипники. Обычно эту часть конструкции изготовляют из чугуна или стали. Конструкция разъемной балки считается устаревшей. Из-за наличия поперечного стыка она имеет не очень высокую жесткость, кроме того, велика вероятность появления течи масла через стык, нагруженный изгибающими моментами, так же затруднительны и трудоемки операции регулировки. При необходимости ремонта механизмов мост с автомобиля демонтируют.

Цельная балка имеет среднюю часть, которая выполнена в виде одной детали. Полуосевые чулки представляют собой стальные трубы, которые запрессованы в среднюю литую часть балки. Детали механизмов при сборке устанавливаются через съемную заднюю крышку, при снятии которой можно производить осмотр деталей без демонтажа. Однако проводить монтажно-демонтажные и регулировочные работы, где требуется специальный инструмент, без снятия моста с автомобиля затруднительно.

Балка типа «банджо». Главная передача монтируется в картере, связанном с балкой через фланцевое соединение, и в сборе, без нарушения каких-либо регулировок, устанавливается в балку и демонтируется из нее, причем балка при этом может остаться на автомобиле. Плоскость разъема балки и картера главной передачи может быть вертикальной или горизонтальной.

Комбинированный мост. Главные передачи

Комбинированный мост чаще всего является передним управляемым и ведущим. Балка комбинированного моста из-за наличия шарниров в приводе управляемых колес имеет более сложную конструкцию, особенно в части шкворневого узла. Поскольку ось вала, подводящего к колесу крутящий момент, должна пересекаться с осью шкворня, последний в качестве отдельной детали не существует, а представлен в виде двух соосных шипов, установленных в расположенных по краям балки шаровых опорах поворотного устройства. Определенное расположение шипов создает необходимые для стабилизации управляемых колес углы наклона оси поворота колеса в поперечной и продольной плоскостях.

Главные передачи увеличивают крутящий момент и передают его на полуось, расположенную под углом 90° к продольной оси автомобиля (при расположении двигателя параллельно продольной оси автомобиля).

Требования, предъявляемые к главной передаче:

• оптимальное значение передаточного числа;

• высокий КПД;

• низкий уровень шума;

• небольшие вертикальные размеры (как правило, именно нижняя точка картера главной передачи определяет величину дорожного просвета).

По числу ступеней преобразования передаточного числа главные передачи делятся на одинарные и двойные. Главные одинарные передачи могут быть:

• коническими (оси зубчатых колес пересекаются);

• гипоидными (оси зубчатых колес перекрещиваются);

• цилиндрическими;

• червячными (с верхним или нижним расположением червяка).

В отличие от одинарной, двойная передача состоит из двух пар зубчатых колес. По компоновочной схеме главные двойные передачи делятся на центральные и разнесенные. В центральной главной передаче обе пары зубчатых колес составляют центральный редуктор. В разнесенной главной передаче одна пара зубчатых колес образует центральный редуктор, а вторая идет к ведущим колесам, образуя два колесных редуктора с одинаковыми передаточными числами.

По типу главные двойные передачи делятся на следующие зубчатые зацепления:

• коническо-цилиндрические;

• цилиндрическо-конические;

• коническо-планетарные.

Главная передача называется проходной, если имеет проходной вал, посредством которого она связана с другой главной передачей или непроходной, если возможность вывода крутящего момента не предусмотрена.

Существуют переключаемые главные передачи, обеспечивающие возможность выбора одного из двух передаточных чисел. Такие передачи называются двухступенчатыми.

Главные одинарные передачи

Цилиндрическая одинарная главная передача — самая простая конструкция главной передачи обычно бывает у легковых автомобилей с поперечным расположением силового агрегата.

Червячная передача. Основные свойства червячной передачи — низкий уровень шума при работе, небольшие габаритные размеры, большое передаточное число и относительно низкий КПД.

Главные двойные передачи

Центральная главная двойная передача автомобилей ЗИЛ-4314.10 состоит из следующих элементов:

• ведущего конического зубчатого колеса, изготовленного как одно целое с валом, который получает крутящий момент от карданной передачи;

• ведомого конического зубчатого колеса со спиральными зубьями, которое крепится к фланцу промежуточного вала заклепками;

• промежуточного вала с косозубым цилиндрическим зубчатым колесом (ведущим), изготовленным как одно целое с валом;

• ведомого цилиндрического косозубого колеса, которое крепится болтами к корпусу коробки дифференциала, состоящего из левой и правой чашек.

Разнесенная главная двойная передача состоит из центральной главной конической передачи и двух колесных редукторов. Разделение второго элемента главной передачи надвое и разнесение этих половин к колесам существенно осложняют и утяжеляют конструкцию, но в то же время дают следующий ряд преимуществ:

• уменьшение вертикальных размеров центральной части передачи тем, что в ней находится одна лишь коническая пара с небольшим диаметром ведомого зубчатого колеса;

• увеличение дорожного просвета автомобиля путем поднятия оси главной передачи над осью колес;

• уменьшение диаметра приводных валов;

• уменьшение реактивного момента, воспринимаемого средней частью балки моста.

Двойная разнесенная главная передача (автомобиль МАЗ-5335) состоит из главной конической передачи, установлен в картере заднего моста. Колесный редуктор состоит из следующих элементов:

• солнечной шестерни;

• коронного (ведомого) зубчатого колеса, которое жестко крепится к ступице колеса;

• водила, состоящего из двух чашек, на которых крепятся оси сателлитных зубчатых колес, жестко прикрепленных к кожуху полуосей;

• трех сателлитных зубчатых колес, сидящих на неподвижных осях водила.

Подвеска

Подвеска осуществляет упругую связь рамы или кузова автомобиля с мостами или непосредственно с колесами, смягчая толчки и удары, возникающие при наезде колес на неровности дороги.

Подвеска автомобиля включает в себя:

• упругие элементы;

• направляющие устройства;

• гасители колебаний;

• стабилизаторы поперечной устойчивости.

Требования, предъявляемые к подвескам:

• оптимальная характеристика жесткости — зависимость между нормальной (перпендикулярно опорной поверхности) нагрузкой на колесо и деформацией (прогибом) подвески, измеряемая как нормальное перемещение центра колеса относительно кузова;

• оптимальная кинематика; работа направляющего устройства подвески при вертикальных перемещениях, крене либо галопировании (продольные угловые колебания) кузова автомобиля вызывает не только вертикальные перемещения колес, но также боковые и угловые перемещения как относительно дороги, так и относительно кузова;

• оптимальные характеристики демпфирования — гашение колебаний колес и кузова автомобиля, возникших в результате воздействия главным образом дорожных неровностей; может происходить вследствие трения в некоторых типах упругих элементов и в шарнирах направляющего устройства подвески;

• минимальное число неподрессоренных частей; к ним относятся колеса и шины, тормозные механизмы колес, поворотные кулаки, стойки подвески, мосты и т. п.;

• хороший контакт колеса с дорогой; при переезде автомобилем на большой скорости выпуклых неровностей (трамплинов) на дорожной поверхности из-за недостаточного хода отбоя подвески, либо большой ее инерционности, возможен отрыв колеса от дороги;

• низкие уровень шума и вибрации; при эксплуатации автомобиля возникают скрипы из-за трения подвески в металлических шарнирах, резиновых опорах и упругих элементах и стуки в шарнирах из-за их изнашивания и образования зазоров;

• рациональная компоновочная схема.

Упругие элементы подвесок

Упругие элементы подвесок смягчают толчки, снижают вертикальные ускорения и динамические нагрузки, передаваемые на несущую конструкцию при движении автомобиля.

Применяют следующие типы упругих элементов подвески:

• металлические: листовые рессоры, спиральные пружины, торсионы (стержни, работающие на скручивание);

• неметаллические: пневматические, гидропневматические и резиновые (обеспечивают упругость подвески за счет упругих свойств резины, воздуха и жидкости).

Листовые рессоры. Рессорная подвеска является основной для грузовых автомобилей. Она содержит минимальное число структурных элементов — рессору с узлами крепления и амортизатор (не всегда).

Рессора состоит из стальных листов, имеющих одинаковую ширину и различную длину выгнутой формы, собранных вместе. Кривизна листов не одинакова и зависит от их длины. Она увеличивается с уменьшением длины листов, что необходимо для плотного прилегания их друг к другу в собранной рессоре.

Пружины. Спиральные (витые) пружины изготовляются из прутка круглого сечения и могут быть цилиндрическими, коническими или бочкообразными. Для изготовления пружин используются рессорно-пружинные стали (что и для листов рессор). Энергоемкость и долговечность пружины больше, чем у листовой рессоры, а масса меньше. Но возникает необходимость в направляющем устройстве подвески, поэтому значительного выигрыша в массе обычно не получается, хотя экономия пружинных сталей очевидна.

Торсионы применяются при независимой подвеске колес на многоосных автомобилях, прицепах и на некоторых легковых автомобилях. Торсион представляет собой стальной упругий стержень, работающий на скручивание. Он может быть сплошным круглого сечения, а также составным — из круглых стержней или прямоугольных пластин. На концах торсиона имеются головки (утолщения) с нарезанными шлицами или выполненные в форме многогранника. С помощью головок торсион одним концом крепится к раме или кузову автомобиля, а другим — к рычагам подвески. Упругость связи колеса с рамой обеспечивается скручиванием торсиона. Торсионы, как пружины, требуют направляющих и гасящих устройств.

Упругие пневматические элементы целесообразно применять на автомобилях, масса подрессоренной части которых меняется значительно (грузовые автомобили), или требования к плавности хода которых высоки (автобусы). Путем изменения давления воздуха в пневматическом элементе можно регулировать жесткость подвески. При этом появляется возможность регулировать высоту пола (автобусы), грузовой платформы или прицепного устройства относительно дороги либо величину дорожного просвета (при независимой подвеске).

Упругие гидропневматические элементы. В гидропневматических элементах, также как и в пневматических, рабочим телом является газ, но под более высоким давлением (до 20 МПа), которое обеспечивается жидкостью, поскольку герметизацию резервуара с жидкостью вследствие ее более высокой вязкости осуществлять проще. Основное достоинство упругих гидропневматических элементов определяется их характеристикой жесткости — при больших коэффициентах использования объемов пневмоэлемента и высоких давлениях газа характеристика жесткости может быть приближена к идеальной.

Гидропневматический элемент включает в себя гидравлический цилиндр с поршнем и толкателем (штоком) и упругий пневматический элемент (пневмокамеру), который размещается в самом цилиндре или отдельно от него.

Упругие резиновые элементы. Резина, особенно работающая на сдвиг, обладает большой энергоемкостью. Это ее свойство можно было бы использовать, применяя резину как рабочее тело упругих элементов. Однако из-за ряда существенных недостатков в настоящее время резина применяется для упругих вспомогательных элементов (буферов), шарниров и шумо-виброизолирующих прокладок.

ТРАНСМИССИЯ АВТОМОБИЛЯ