Зависимость толщины стенки ограждения из листовой стали от ударной нагрузки

Ударная нагрузка, кН Толщина стенки ограждения, мм Ударная нагрузка, кН Толщина стенки ограждения, мм
4,91 73,5
8,33 80,36
14,6 96,04
17,15 102,9
25,67 115,64
31,16 139,16
39,69 159,74
47,04 188,16
61,74 205,8

Сплошные ограждения, толщину стенок которых находят по указанному методу, могут быть заменены сетчатыми или решетчатыми после соответствующего расчета конструкции ограждения в зависимости от характера нагрузки (растяжение, изгиб, срез).

Для ограждений станков, расколов и элементов конструкций животноводческих ферм расчетное усилие, Н, развиваемое животным,

F= 40m,

где т — масса животного, кг.

82 :: 83 :: 84 :: Содержание

 

84 :: 85 :: 86 :: 87 :: 88 :: Содержание

7.4.2. Предохранительные устройства

Устройства, обеспечивающие безопасную эксплуатацию машин и оборудования посредством ограничения скорости, давления, температуры, электрического напряжения, механической нагрузки и других факторов, которые способствуют возникновению опасных ситуаций, называют предохранительными. Они должны срабатывать автоматически с минимальным инерционным запаздыванием при выходе контролируемого параметра за допустимые пределы.

Предохранителями от механических перегрузок служат срезные шпильки и штифты, пружинно-кулачковые, фрикционные и зубчато-фрикционные муфты, центробежные, пневматические и электронные регуляторы.

Шкив, звездочку или шестерню, расположенные на ведущем валу, соединяют с приводным (ведомым) валом срезными шпильками или штифтами, рассчитанными на определенную нагрузку. Если последняя превысит допустимое значение, то шпилька разрушается и ведущий вал начинает вращаться вхолостую. После устранения причины появления таких нагрузок срезанную шпильку заменяют новой.

Диаметр штифта, мм, предохранительной муфты, который обычно изготовляют из стали 45 или 65 Г,

где Mр — расчетный момент, Н*м; R — расстояние между осевыми линиями передающих валов и штифта, м; τср — предел прочности на срез, МПа (для стали 45 и 65 Г в зависимости от вида термообработки при статической нагрузке τср = = 145...185 МПа; при пульсирующей нагрузке τср = 105...125 МПа; при симметричной знакопеременной нагрузке τср = 80...95 МПа); для расчетов рекомендуют принимать меньшие значения.

Обычно расчетный момент Мр принимают на 10...20 % выше предельного допустимого момента Mпp, т. е.

Мр = (1,1...1,2)Мпр.

Муфты фрикционного типа автоматически срабатывают в случае превышения вращающего момента, на который их предварительно настраивают. Условие выключения, например, зубчато-фрикционной предохранительной муфты:

где Mр — расчетный вращающий момент, Н м; Mпред — предельно допустимый вращающий момент, Н*м; а —угол наклона боковой поверхности кулачка (α = 25...35°); β —угол трения боковой поверхности кулачка (β = 3...5°); D — диаметр окружности точек приложения окружного усилия к кулачкам, м; d — диаметр вала, м; f1 —коэффициент трения в шпоночном соединении подвижной втулки (f1 = 0,1...0,15).

Предохранительные муфты для цепных и ременных передач сельскохозяйственных машин с зубчато-фрикционными шайбами стандартизированы.

Дизели, паровые и газовые турбины, детандеры снабжают регуляторами частоты вращения, в основном центробежного типа. Для предотвращения опасного для машины и обслуживающего персонала повышения частоты вращения коленчатого вала посредством ограничения подачи топлива или пара служит регулятор.

Концевые выключатели необходимы для предупреждения поломок оборудования, возникающих при переходе движущихся частей за установленные пределы, ограничения перемещения суппорта на металлорежущих станках, для пути движения груза в вертикальной и горизонтальной плоскостях при работе грузоподъемных механизмов и т. д.

Ловители применяют на грузоподъемных и транспортирующих машинах, в лифтах для удержания поднятого груза в неподвижном состоянии даже при наличии самотормозящих тормозных систем, которые при износе или неправильном уходе могут утратить свою работоспособность. Различают храповые, фрикционные, роликовые, клиновые и эксцентриковые ловители.

Во избежание превышения давления пара или газа используют предохранительные клапаны и мембраны. Предохранительные клапаны бывают по виду грузовыми (рычажными), пружинными и специальными; конструкции корпуса — открытые и закрытые; способу размещения — одинарные и двойные; высоте подъема — низкоподъемные и полноподъемные.

Рычажные клапаны (рис. 7.3, а) имеют относительно небольшую пропускную способность и при превышении давления сверх допустимого значения выбрасывают рабочий газ или пар в окружающую среду. Поэтому в сосудах, работающих под давлением


Рис. 7.3. Схемы предохранительных рычажных (о), пружинных (б) клапанов и мембраниг):
1 — натяжной винт; 2 — пружина; 3 — тарелка клапана

токсичных или взрывоопасных веществ, обычно устанавливают пружинные клапаны закрытого типа (рис. 7.3, б), сбрасывающие вещество в специальный, соединенный с аварийной емкостью трубопровод. Регулируют рычажный клапан на предельно допустимое значение по манометру путем изменения массы груза т или расстояния b от оси клапана до груза. Пружинный клапан регулируют с помощью натяжного винта 1, изменяющего усилие прижатия тарелки клапана 3 пружиной 2. Основной недостаток предохранительных клапанов — их инерционность, т. е. обеспечение защитного действия только при постепенном нарастании давления в сосуде, на котором они установлены.

Для определения проходного сечения предохранительных клапанов используют теорию истечения газов из отверстия. Рассмотрим следующую зависимость:

где Q — пропускная способность клапана, кг/ч; μ — коэффициент истечения (для круглых отверстий μ = 0,85); SKплощадь сечения клапана, см2; р — давление под клапаном, Па; g = 9,81 см/с2 — ускорение свободного падения; М — молекулярная масса газов или паров, проходящих через клапан; k = cpcv — отношение теплоемкостей при постоянном давлении и постоянном объеме (для водяного пара k= 1,3; для воздуха k = 1,4); Л —газовая постоянная, кДж/(кг*К), для водяного пара R = = 461,5 кДж/(кг*К); для воздуха R = 287 кДж/(кг*К); Т— абсолютная температура среды в защищаемом сосуде, К.

Подставив в последнюю формулу значения μ, g, R и среднее значение k при известном значении Q, можно определить площадь сечения предохранительного клапана, см2,

SK=Q/(216p√ M/T).

Число и суммарное сечение предохранительных клапанов находят из выражения

ndкhк = kкQк/pк,

где п — число клапанов (на котлах паропроизводительностью ≤ 100 кг/ч допускается установка одного предохранительного клапана, при паропроизводительности котла более 100 кг/ч его снабжают не менее чем двумя предохранительными клапанами); dквнутренний диаметр тарелки клапана, см (dк = 2,5...12,5 см); hк — высота подъема клапана, см; kккоэффициент (для клапанов с малой высотой подъема при hк≤ 0,05dк kк = 0,0075; для полноподъемных клапанов при 0,05dк < hк≤ 0,25dк kк = = 0,015); Qкпроизводительность котла по пару при максимальной нагрузке, кг/ч; ркабсолютное давление пара в котле, Па.

Для защиты сосудов и аппаратов от очень быстрого и даже мгновенного повышения давления применяют предохранительные мембраны (рис. 7.3, в и г), которые в зависимости от характера их разрушения при срабатывании делят на разрывные, срезные, ломающиеся, хлопающие, отрывные и специальные. Наиболее распространены разрывные мембраны, разрушающиеся под действием давления, значение которого превышает предел прочности материала мембраны.

Мембранные предохранительные устройства изготовляют из различных материалов: чугуна, стекла, графита, алюминия, стали, бронзы и др. Тип и материал мембраны выбирают с учетом условий эксплуатации сосудов и аппаратов, на которые их устанавливают: давления, температуры, фазового состояния и агрессивности среды, скорости нарастания давления, времени сброса избыточного давления и др.

Для обеспечения работы мембраны необходимо определить толщину пластин мембраны в зависимости от значения разрушающего давления. Пропускная способность, кг/с, мембранных предохранительных устройств при повышении давления в защищаемом сосуде:

Qм=0,06Sрабpпр√ M/Tг,

где Sраб — рабочее (проходное) сечение, см2; рпрабсолютное давление перед предохранительным устройством, Па; Тг — абсолютная температура газов или паров, К.

Необходимая толщина рабочей части ломающейся мембраны, мм,


Рис.7.4. Схема работы водяного затвора низкого давления:
а — при нормальной работе: б— при обратном ударе; 1—запорный клапан; 2— газоотводящая трубка; 3 — воронка; 4— предохранительная трубка; 5— корпус; 6— контрольный клапан

b = ppdплkоп(4[σcp]),

где pр —давление, при котором должна разрушиться пластинка, Па; dmрабочий диаметр пластины, см; kon — масштабный коэффициент, определяемый опытным путем (при d/b — 0,32 k — = 10... 15); [σср] — временное сопротивление срезу, МПа.

Толщина мембран, изготавливаемых из хрупких материалов,

b = 1,1rпл√pp/[σиз]

где rплрадиус пластины, см; [σиз] — предел прочности материала пластины на изгиб, Па.

К предохранительным устройствам, предотвращающим взрыв ацетиленового генератора, относят водяные затворы (рис. 7.4), не пропускающие пламя внутрь генератора. При обратном ударе пламени, возникающем, например, при зажигании газовой горелки, взрывчатая смесь попадает в завтор и вытесняет часть воды по газоотводящей трубке 2. Затем конец трубки 4 получит сообщение с атмосферой, избыток газа выйдет, давление нормализуется и устройство вновь начнет работать по схеме, приведенной на рисунке 7.4, а.

Для защиты электроустановок от чрезмерного повышения силы тока, которое может вызвать короткое замыкание, пожар и поражение человека, служат автоматические отключатели и предохранители.

84 :: 85 :: 86 :: 87 :: 88 :: Содержание

 

88 :: 89 :: 90 :: Содержание

7.4.3. Тормозные устройства

Тормозные устройства предназначены для удержания движущихся частей, поднятого груза; снижения скорости движения и останова машин, механизмов, спуска груза; поглощения энергии

поступательно движущихся или вращающихся масс оборудования, машин, механизмов и груза.

По конструктивному исполнению тормозные устройства могут быть колодочными, ленточными, дисковыми и коническими; по схеме включения — открытого (торможение происходит от усилия, прилагаемого к рукоятке или педали), замкнутого (рабочие органы постоянно прижимаются специальным грузом, сжатой пружиной или поднимаемым грузом) типов и автоматические (включаются в работу без участия человека); по виду привода — механическими, электромагнитными, пневматическими, гидравлическими и комбинированными; по назначению — рабочими, резервными, стояночными и экстренного торможения.

При определении тормозного момента для повышения производительности машин необходимо стремиться к наибольшим допустимым замедлениям.

На машинах, приводимых в действие двигателями внутреннего сгорания, чаще всего применяют управляемые тормоза замкнутого типа с надежным стопорным устройством, а на грузоподъемных механизмах — автоматические тормоза замкнутого типа.

Тормоза надежнее устанавливать непосредственно на рабочем органе (барабане, колесе и т. п.), но конструкция тормоза в этом случае получается громоздкой. Для обеспечения компактности и разгрузки механизма от инерционных сил принято устанавливать тормоза на приводном валу, кинематически жестко связанном с валом рабочего органа.

Колодочные тормоза просты и надежны в работе, но сравнительно громоздки. Одноколодочные тормоза применяют в механизмах с ручным приводом, двухколодочные — для торможения валов, вращающихся в разных направлениях (тормозной вал при этом не испытывает поперечной нагрузки).

Ленточные тормоза применяют в сельскохозяйственных машинах, гусеничных тракторах, подъемных механизмах и т. п. Рабочими органами таких тормозов служат стальная лента, иногда обшитая фрикционным материалом, и шкив.

Дисковый тормоз представляет собой систему фрикционных дисков, из которых одни вращаются, а другие неподвижны или стопорятся при вращении в одну из сторон. В многодисковых тормозах при одном и том же осевом усилии можно получить большой тормозной момент.

Конический тормоз воспринимает тормозной момент корпусом с внутренней конической поверхностью, свободно посаженным на валу и вращающимся при подъеме груза. Для стопорения корпуса при обратном вращении (спуск) служит храповой механизм.

Управление тормозами вручную, а также с помощью гидравлических и пневматических устройств применяют в машинах, приводимых в движение от двигателя внутреннего сгорания, в кранах

и сельскохозяйственных машинах, а управление с помощью электромагнита — в промышленных подъемно-транспортных механизмах.

Кроме рассмотренных ранее тормозных устройств используют реверсирование и электрическое торможение электродвигателей. Для реверсирования асинхронных электродвигателей служит реверсивный магнитный пускатель, контакторы которого сблокированы для предотвращения одновременного включения и, следовательно, короткого замыкания. Динамическое торможение асинхронных электродвигателей обычно применяют для точного останова нереверсированного электродвигателя.

Торможение противовключением возможно в схемах реверсивного и нереверсивного управления короткозамкнутыми асинхронными электродвигателями. Однако оно связано с повышенными потерями и нагревом, поэтому для нереверсивных асинхронных электродвигателей чаще всего применяют динамическое торможение, а для реверсивных — торможение противовключением.

88 :: 89 :: 90 :: Содержание

 

90 :: 91 :: Содержание

7.4.4. Блокировочные устройства

Блокировкой называют совокупность методов и средств, обеспечивающих фиксацию частей машин или элементов электрических схем в определенном состоянии, которое сохраняется независимо от наличия или прекращения воздействия.

Ограждения, предохранительные, тормозные устройства и сигнализация не всегда обеспечивают требуемый уровень защиты работающего. Поэтому применяют блокировочные устройства, которые либо препятствуют неправильным действиям персонала (например, попытке оператора включить оборудование при снятом ограждении), либо предотвращают развитие аварийной ситуации, отключая определенные участки технологической системы или вводя в действие специальные сбрасывающие устройства.

По принципу действия блокировочные устройства подразделяют на механические, электрические, фотоэлектрические, электронные, электромагнитные, пневматические, гидравлические, оптические, радиационные и комбинированные, а по исполнению — на открытые, закрытые и взрывозащищенные. Их выбор зависит от особенностей окружающей среды.

Механические устройства связывают с помощью конструктивных элементов ограждения с тормозным или пусковым устройством или с тормозным и пусковым устройствами вместе. Однако из-за сложности конструкции и изготовления такие устройства не нашли широкого распространения.

Наиболее распространены электрические устройства. Основные элементы: преобразователь контролируемой величины в выходной сигнал, удобный для передачи и дальнейшей обработки; измерительно-командное устройство, определяющее величину и

характер сигнала и выдающее команду на ликвидацию опасного режима; исполнительный механизм. Примером может служить блокировочное устройство заточного станка с контактами, выключающими электродвигатель при поднятии защитного экрана. При его опускании контакты замыкаются, включая станок. Электрическим блокировочным устройством, препятствующим пуску двигателя при включенной передаче, оснащают тракторы с пусковыми двигателями. Если рычаг коробки передач не установлен в нейтральное положение, то контактный прерыватель размыкает цепь питания первичной обмотки магнето, не давая возможности пустить пусковой двигатель.

Фотоэлектрические устройства срабатывают при пересечении светового луча, направленного на фотоэлемент. При изменении светового потока, падающего на фотоэлемент, в электрической цепи изменяется ток, который подается на измерительно-командное устройство, дающее, в свою очередь, импульс на включение исполнительного механизма защиты. Особенно эффективны блокирующие устройства, запирающие педаль или рукоятку пресса, пока руки рабочего находятся в опасной зоне. Благодаря компактности, отсутствию мешающих работе или ограничивающих рабочую зону элементов такие устройства применяют в прессах, штампах, гильотинных ножницах и др.; с их помощью устраивают ограждения опасных зон большой протяженности (до нескольких десятков метров) без механических узлов и конструкций.

Пневматические и гидравлические устройства применяют на агрегатах, где рабочие тела находятся под повышенным давлением: в насосах, компрессорах, турбинах и т. п. Основное преимущество таких устройств — их малая инертность. При возникновении аварийной ситуации в машинах с гидро- или пневмоприводом сопутствующий этому процессу поток жидкости или газа, воздействуя на специальный рычаг, перекрывает клапаны питающей среды.

Существуют блокировочные устройства, принцип работы которых основан на использовании ионизирующих свойств радиоактивных веществ. Источник слабого излучения в виде браслета надевают на руку работающего. При приближении руки к опасной зоне излучение улавливается и преобразуется в электрический ток. Ток подается на тиратронную лампу. Последняя передает импульс на реле, размыкающее цепь магнитного пускателя. Оборудование, которым управляет этот пускатель, останавливается.

90 :: 91 :: Содержание

 

91 :: 92 :: 93 :: Содержание

7.5. СИГНАЛИЗАЦИЯ И ЕЕ ВИДЫ

Сигнализация безопасности — это средство предупреждения работающих о приближающейся или возникшей опасности. Системы сигнализации включают в себя специальные автоматические устройства, отключающие машину или установку в случае, если поданный сигнал не повлечет за собой выполнения в

установленный отрезок времени определенных действий оператора по выводу оборудования на нормальный режим функционирования или приведению факторов окружающей среды к нормативным значениям. Сигнализирующие устройства служат для контроля давления, высоты, расстояния, вылета стрелы крана, температуры, относительной влажности и скорости движения воздуха, содержания в нем вредных веществ, уровня звукового давления, частоты вращения, параметров колебаний и т-, д.

По устройству сигнализации подразделяют на внешнюю (габаритные огни, стоп-сигналы, указатели поворота, фонари заднего хода и т. п.) и внутреннюю (контрольные лампы давления масла в двигателе, заряда аккумуляторной батареи, включения дальнего света фар, открытия дверей и т. д.; спидометр, тахометр, манометр давления воздуха в системе пневматических тормозов и др.); по принципу действия — на звуковую (сирены, свистки, зуммеры, звонки, мелодии, гудки), визуальную (световую, цветовую, знаки, надписи), одоризационную (осуществляемую с помощью специальных датчиков, улавливающих изменение запахов) и комбинированную; по характеру передачи сигнала — на непрерывную и пульсирующую; по назначению — на информационную, предупредительную, аварийную и ответную; по способу срабатывания — на автоматическую и полуавтоматическую.

Наиболее распространены световая и звуковая сигнализации. Световую сигнализацию применяют в качестве одного из основных средств обеспечения безопасности на механических транспортных средствах. Она служит для предупреждения водителей и пешеходов о маневрах, совершаемых тем или иным автомобилем, трактором или другими мобильными машинами. В электроустановках световая сигнализация оповещает о наличии или отсутствии напряжения, штатном режиме автоматических линий.

Звуковыми сигналами снабжают подъемно-транспортные установки; агрегаты, обслуживаемые группой работающих; сложные сельскохозяйственные машины с большим числом рабочих параметров, одновременно контролируемых оператором, и др. Например, звуковой сигнал автоматически включается на зерноуборочных комбайнах при забивании барабана молотилки или шнека. При обслуживании агрегата несколькими рабочими сигнал подается при его включении для предупреждения о принятии ими соответствующих мер безопасности. Звуковую сигнализацию применяют для оповещения работающих о достижении предельно допустимого уровня жидкости в каком-либо резервуаре, предельных температур и давления в различных установках, а также о превышении предельно допустимых концентраций или уровней вредных производственных факторов.

К сигнализационным устройствам относят: амперметры, вольтметры, манометры, термометры, тахометры, указатели уровня жидкости (водомерные стекла или поплавковые уровнемеры) и др.

Они постоянно действуют, и посредством постоянного или периодического наблюдения за стрелкой прибора или столбиком жидкости можно следить за давлением, температурой, частотой вращения, изменением уровня жидкости в сосуде и т. д., не допуская опасного превышения (понижения) значений контролируемых параметров.

91 :: 92 :: 93 :: Содержание

 

93 :: 94 :: 95 :: Содержание

7.6. СИСТЕМА ЦВЕТОВ И ЗНАКОВ БЕЗОПАСНОСТИ

Система цветов и знаков безопасности предназначена для выделения отдельных производственных объектов и зон по какому-либо признаку опасности, позволяя предупреждать несчастные случаи и аварии, не заменяя технических средств обеспечения безопасности и необходимости проведения мероприятий по безопасности труда. ГОСТ Р 12.4.026 "Цвета сигнальные и знаки безопасности" установлены характеристики сигнальных цветов, форма, размеры и цвета знаков безопасности, а также порядок их применения.

Сигнальные цвета означают: красный — запрещение, непосредственная опасность, обозначение средств пожаротушения; желтый — предупреждение, возможная опасность; зеленый — безопасность, разрешение; синий — указание, информация.

Для окрашивания используют следующие цвета:

зеленый — эвакуационные знаки, знаки медицинского назначения и сигнальные лампы нормального режима работы оборудования;

красный — внутренние поверхности корпусов и кожухов, ограждающих подвижные части машин и механизмов, двери шкафов с электрооборудованием; емкости с огнеопасным, взрывоопасным и легковоспламеняющимся содержимым; кнопки "Стоп", рычаги аварийного выключения; трубопроводы горячей воды; электрические машины; запрещающие знаки и знаки пожарной безопасности; сигнальные лампы тревоги, неисправности и аварийных режимов; символы опасного электрического тока;

желтый — емкости для пестицидов и других опасных или токсичных веществ; перила; открытые вращающиеся части оборудования; точки смазывания машин и механизмов; предупреждающие знаки; кромки оградительных устройств, не полностью закрывающие опасные зоны (ограждения приводных цепей или ремней, кожух абразивного круга и т. п.); постоянные и временные ограждения или элементы ограждений, устанавливаемых на границах опасных зон; сигнальные лампы;

синий — указательные и предписывающие знаки; места присоединения заземляющих устройств; места зачаливания или установки домкратов.

Знаки безопасности государственным стандартом разделены на следующие группы: запрещающие; предупреждающие;

предписывающие; указательные; пожарной безопасности; эвакуационные; медицинского назначения.

Запрещающие знаки (см. форзац) запрещают или ограничивают какие-либо действия. Например, пользование открытым огнем, электронагревательными приборами, курение, проход, тушение водой, вход или проход с животными, включение, доступ посторонних, прием пищи, использование лифта для подъема или спуска людей и др.

Предупреждающие знаки (см. форзац) сигнализируют о возможной опасности. Например, о наличии легковоспламеняющихся, ядовитых, едких или коррозионных веществ, возможном падении груза, опасности поражения электрическим током, лазерном излучении, электромагнитном поле, горячей поверхности, вероятности затягивания между вращающимися элементами, травмировании рук и т. п.

Предписывающие знаки (см. форзац) разрешают определенные действия работников только при соблюдении конкретных требований безопасности труда: при использовании защитных очков, каски или шлема, защитных наушников, средств индивидуальной защиты органов дыхания, защитной обуви, защитных перчаток, защитной одежды; защитного щитка, предохранительного или страховочного пояса; при отключении штепсельной вилки и др. Знаки "Проход здесь", "Переходить по подземному переходу" и "Курить здесь" устанавливают в местах, где обеспечена безопасность выполнения этих действий. В случаях, которые не подходят под действие конкретного знака, устанавливают общий предписывающий знак.

Указательные знаки (см. форзац), как следует из их названия, указывают расположение определенного места или объекта (пункта или места приема пищи, питьевой воды и места для курения).

Знаки пожарной безопасности (см. форзац) устанавливают в местах расположения пожарного крана, пожарной лестницы, огнетушителя, телефона для использования при пожаре, нескольких средств противопожарной защиты, пожарного водоисточника, пожарного сухотрубного стояка, пожарного гидранта, кнопок включения установок или систем пожарной автоматики, звукового оповещателя пожарной тревоги. Их также применяют для обозначения направления движения.

Эвакуационные знаки и знаки медицинского назначения (см. форзац) устанавливают в местах расположения аптечки первой медицинской помощи, средств выноса (эвакуации) пораженных, пункта приема гигиенических процедур (душевой), пункта обработки глаз, медицинского кабинета, телефона связи с медицинским пунктом (скорой медицинской помощью), пункта или места сбора и других местах. Эти знаки служат также для информирования о направлениях движения при эвакуации ("Направление к эвакуационному выходу налево", "Направление к

эвакуационному выходу по лестнице вниз" и др.) и действиях в аналогичных случаях ("Для открывания сдвинуть", "Для доступа вскрыть здесь", "Открывать движением от себя" и др.).

При необходимости уточнить, ограничить или усилить действие указанных выше знаков безопасности применяют вспомогательные знаки, имеющие цвет, соответствующий сигнальному цвету знака, вместе с которым их применяют. Эти знаки выполняют прямоугольной формы с поясняющей надписью.

93 :: 94 :: 95 :: Содержание

 

95 :: 96 :: Содержание

7.7. ПРЕДУПРЕДИТЕЛЬНЫЕ ПЛАКАТЫ И НАДПИСИ

Для профилактики производственного травматизма и профессиональной заболеваемости используют плакаты и предупредительные надписи.

Плакаты (см. форзац и рис. 7.9) можно подразделить по назначению на следующие группы:

учебные — содержат сведения по вопросам безопасности труда учебного характера с целью представления материала для усвоения обучающимися в наглядном виде;

инструктивные — предписывают отдельные нормы и правила безопасности или запрещают опасные приемы работы для формирования у работающих готовности к выполнению этих норм и правил;

агитационно-пропагандистские — призывают к безопасному поведению и пропагандируют передовой опыт в области охраны труда;

информационные — содержат различные сведения по охране труда (о структуре службы охраны труда, об издании новых книг по безопасности жизнедеятельности на производстве и т. д.).

По художественному оформлению плакаты бывают шрифтовые, основной составной частью которых служит текст (с изображением или без него), и изобразительные (с текстом или без текста).

Для усиления эффективности воздействия плакатов и предупредительных надписей следует обращать внимание на актуальность темы и новизну сообщающейся информации. Разработчики должны хорошо знать аудиторию, к которой они обращаются (пол, возраст, профессию, преобладающие мотивы, потребности и т.д.). Необходимо лаконично выражать идею, чтобы человек мог домыслить сам то, что не изображено и не написано. При возникновении иллюзии собственного мышления повышается действенность убеждения. Изображенная ситуация должна быть знакомой, типичной, а сам плакат — привлекательно оформленным с четко выраженной идеей. По идейной направленности различают три типа плакатов:

основанный на обстоятельствах, вызывающих к себе положительное отношение;

 


Рис. 7.9. Плакаты по охране труда:
а...е — варианты

 

строящийся на сатирическом или драматическом показе негативного факта и его последствий;

базирующийся на динамичном и напряженном противопоставлении отрицательного и положительного действий.

Надписи должны быть краткими и доходчивыми. Легче всего запоминаются надписи в виде короткого призыва, состоящие из трех—шести слов. При этом желательно ритмическое построение текста. Большой выразительностью отличается и инверсия — изменение обычного порядка слов с целью выделения главного смыслового элемента надписи. Используют неполные фразы (например, "Стой! Опасная зона"), в которых пропущенное слово подразумевают (в данном случае — впереди). Следует помнить, что в тексте плаката должен отсутствовать назидательный тон.

95 :: 96 :: Содержание

 

97 :: 98 :: Содержание

7.8. АВТОМАТИЗАЦИЯ ПРОЦЕССОВ И ДИСТАНЦИОННОЕ УПРАВЛЕНИЕ КАК СРЕДСТВО ПОВЫШЕНИЯ БЕЗОПАСНОСТИ ТРУДА

В утвержденных Министерством труда и социального развития Российской Федерации Рекомендациях по планированию мероприятий по охране труда внедрение систем (устройств) автоматического и дистанционного регулирования производственного оборудования, технологических процессов, подъемных и транспортных устройств, применение промышленных роботов в опасных и вредных производствах в соответствии с требованиями стандартов — одна из первоочередных мер в обеспечении безопасности работающих.

Автоматизация производственных процессов предусматривает использование таких средств управления работой машин и оборудования, с помощью которых можно выполнять технологический процесс по заранее заданному режиму, в определенной последовательности и с установленной производительностью без физических усилий человека, но в основном под его контролем.

Различают частичную, комплексную и полную автоматизацию. Автоматизацию одной или нескольких не связанных операций производственного процесса называют частичной. Ее применяют в случаях, когда непосредственное управление сложным быстротечным процессом становится практически недоступным для человека или когда процесс ведется в условиях, опасных для жизни.

При комплексной автоматизации все звенья производственного процесса действуют в автоматическом режиме как единое целое, а человек контролирует их работу.

При полной автоматизации присутствие человека исключено из процесса управления производством и его функции выполняют машины. В этом случае ошибки, которые может допустить оператор, исключаются.

Дистанционное управление предназначено для управления технологическими процессами или производственным оборудованием с рабочих мест, расположенных за пределами опасной зоны. При этом оператор наблюдает за ходом выполнения работ визуально или с помощью средств сигнализации. Устройства дистанционного управления изготавливают в стационарном и передвижном вариантах. По принципу действия их подразделяют на механические, гидравлические, пневматические, электрические и комбинированные. Их выбирают с учетом конструкции оборудования, степени опасности производственного фактора, необходимости точного соблюдения дистанции и др. Механические устройства используют при расположении оборудования на относительно небольшом расстоянии от пульта управления. Наиболее распространены электрические системы дистанционного управления из-за простоты их устройства и безынерционности.

В сельском хозяйстве применяют дистанционное управление на самоходных зерноуборочных комбайнах, при эксплуатации зерноочистительного, кормоприготовительного, навозоуборочного оборудования, кормораздатчиков, доильных установок, а также при выполнении процессов, связанных с использованием легковоспламеняющихся, взрывоопасных и токсичных веществ (при окраске машин, нанесении защитных покрытий, протравливании семян и др.).

97 :: 98 :: Содержание

 

98 :: 99 :: 100 :: 101 :: 102 :: Содержание

Глава 8

ЭЛЕКТРОБЕЗОПАСНОСТЬ

8.1. ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ЛЮДЕЙ И ЖИВОТНЫХ

Энерговооруженность труда в сельскохозяйственном производстве достаточно высока. Однако электрический ток представляет собой большую опасность для здоровья и жизни людей.

Установлено, что наибольшее число несчастных случаев происходит в результате допуска к работе с электрическими устройствами необученного персонала и пренебрежительного отношения работающих к средствам защиты.

Электробезопасность — это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного действия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

При термическом действии тока возможны ожоги отдельных участков тела, нагрев до высокой температуры кровеносных сосудов, нервов, сердца, мозга и других органов, что вызывает в них серьезные функциональные расстройства. Причем согласно закону Джоуля—Ленца количество выделившейся теплоты прямо пропорционально квадрату силы тока, сопротивлению тела человека и времени воздействия тока на организм.

Электролитическое действие тока выражается в распаде молекул крови и лимфы на ионы. Изменяется физико-химический состав этих жидкостей, что приводит к нарушению жизненного процесса.

Биологическое действие тока заключается в раздражении и возбуждении тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме и связанных с его жизненными функциями. Прямое раздражающее действие тока вызывает непроизвольное сокращение мышечных тканей, через которые он проходит. При рефлекторном действии тока его необычное действие формирует своеобразные нервные импульсы, получая которые центральная нервная система может подать нецелесообразную исполнительную команду органам, в том числе и не лежащим на пути тока.

Различают электротравмы: местные (электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения), вызывающие локальное повреждение организма; общие, когда поражается весь организм из-за нарушения нормальной деятельности жизненно важных органов и систем.

Электрический ожог — самая распространенная электротравма. В зависимости от условий возникновения возможны два основных вида ожога: токовый (или контактный), возникающий при прохождении тока непосредственно через тело человека в результате контакта с токоведущими частями; дуговой, обусловленный воздействием на тело электрической дуги.

Контактный ожог чаще всего возникает при эксплуатации электроустановок с напряжением не более 2000 В. Максимальное количество теплоты выделяется в месте контакта провода с кожей, вызывая ее ожог. С увеличением силы тока начинают поражаться подкожные ткани. Токи высокой частоты больше повреждают внутренние органы при незначительных повреждениях кожного покрова.

Дуговой ожог наблюдают при использовании электроустановок различных напряжений. В этом случае дуга нередко поражает человека (особенно в установках более высоких напряжений), в результате чего через него проходит ток в несколько десятков или даже сотен ампер. В этом случае возможен летальный исход.

Электрические знаки представляют собой резко очерченные пятна серого или бледно-желтого цвета на поверхности тела человека, подвергшегося действию тока.

Металлизация кожи возникает в случае проникновения в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги.

Электроофтальмией называют воспаление наружных оболочек глаза (роговицы и конъкжтивы) из-за воздействия мощного потока ультрафиолетовых лучей, которые испускаются при наличии электрической дуги. Электроофтальмия развивается через 4...8 ч после облучения и продолжается в течение нескольких дней.

Механические повреждения — следствие резких непроизвольных сокращений мышц под действием тока, проходящего через тело. При этом возможны разрывы сухожилий, кожи, кровеносных сосудов и нервной ткани; иногда возникают вывихи суставов и даже переломы костей.

Электрический удар, который относят к общим электротравмам, можно условно разделить на четыре степени:

I — судорожное сокращение мышц;

II — судорожное сокращение мышц с потерей сознания;

III — потеря сознания с нарушением функций дыхания и сердечной деятельности (или того и другого вместе);

IV — клиническая смерть.

Длительность клинической смерти определяют временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток головного мозга. Этот отрезок времени составляет 4...6 мин, но иногда может быть и 7...8 мин. Если вовремя не оказать пострадавшему соответствующую помощь, то наступает биологическая смерть — необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях и распадом белковых структур.

Исход поражения электрическим током определяют следующими факторами: электрическим сопротивлением тела человека, силой протекающего через тело тока, временем воздействия тока, путем протекания тока, частотой и родом тока, индивидуальными особенностями организма человека.

Электрическое сопротивление различных тканей тела человека неодинаково. Например, при токе частотой 50 Гц удельное объемное сопротивление, Ом o м, составляет: для сухой кожи — 3000...20000; кости (без надкостницы)— 10000...2000000; жировой ткани — 30...60; мышечной ткани — 1,5...3; крови — 1...2; спинномозговой жидкости — 0,5...0,6.

Таким образом, кожа характеризуется очень большим удельным сопротивлением, которое служит главным фактором, определяющим сопротивление тела человека в целом.

Сопротивление тела человека Rчколеблется в пределах от 1000 до 100 000 Ом и равно сумме двух одинаковых активных сопротивлений наружного слоя кожи Rн, в совокупности составляющих наружное сопротивление тела человека и внутреннее сопротивление тела RB, т. е.

Rч = 2RH + RB.

Так как внутреннее сопротивление мало, не зависит от площади электродов, частоты тока, приложенного напряжения и примерно равно 500...700 Ом, то, следовательно, полное сопротивление тела человека зависит от сопротивления наружного слоя кожи.

Сопротивление кожи, в свою очередь, снижается (иногда значительно) при повреждении ее рогового слоя; увлажнении, в том числе вследствие потовыделения; загрязнении различными веществами, в особенности токопроводящими; увеличении площади поверхности и плотности контакта, силы проходящего тока и продолжительности его действия; приложенного напряжения. Так, при напряжении 10...38 В начинается пробой верхнего рогового слоя кожи, а при напряжении 127...220 В и выше кожа почти не влияет на сопротивление тела.

Основной поражающий фактор электрического тока — сила тока, проходящего через тело человека. Переменный ток частотой 50 Гц и силой 0,5...1,5 мА вызывает при прохождении через организм ощутимые раздражения в виде слабого "зуда" и легких покалываний.

Указанные значения тока — это граница, или порог, с которого начинается область ощутимых токов, поэтому ток, являющийся наименее ощутимым, называют пороговым ощутимым током.

Электрический ток, вызывающий при прохождении через организм непреодолимые судорожные сокращения мышц руки, в которой зажат проводник, называют неотпускающим током, а его наименьшее значение — пороговым неотпускающим током.

Значения пороговых неотпускающих токов у разных людей неодинаковы. Они различны также для мужчин, женщин, детей и в среднем при частоте тока 50 Гц равны соответственно 16, 11 и 8 мА. При их превышении действие тока распространяется на мышцы туловища, затрудняя дыхание и работу сердца, что приводит к потере сознания через некоторое время.

Прохождение тока через организм может вызвать фибрилляцию сердца — хаотические разновременные сокращения волокон сердечной мышцы (фибрилл), при которых прекращается кровообращение. Наименьшее значение такого тока (100 мА при частоте 50 Гц) называют пороговым фибрилляционным током. Опасность возникновения фибрилляции возрастает при прохождении тока через сердце во время Т-фазы кардиоцикла, когда заканчивается сокращение желудочков и они переходят в расслабленное состояние.

С увеличением длительности протекания тока сопротивление организма заметно снижается, что связано с происходящим под действием тока усилением кровоснабжения участков кожи под электродами, потоотделением и т. п.

Опасность поражения электрическим током сильно увеличивается при прохождении его через жизненно важные органы: сердце, легкие, головной мозг. Однако рефлекторное воздействие тока на них происходит и при иных путях его прохождения, хотя опасность поражения при этом резко снижается. К наиболее опасным таким путям относят петли "голова—руки" и "голова—ноги", к наименее — петля "нога—нога".

С увеличением частоты переменного тока от 0 до 50 Гц опасность поражения возрастает, тогда как с дальнейшим ростом частоты тока опасность поражения снижается и полностью исчезает при частоте 450...500 кГц, хотя такие токи вызывают ожоги при возникновении электрической дуги и прохождении непосредственно через человека. Постоянный ток безопаснее переменного с частотой 50 Гц примерно на одну ступень шкалы номинальных напряжений, т. е. постоянный ток напряжением 380 В действует на человека приблизительно так же, как переменный напряжением 220 В, а действие постоянного тока напряжением 220 В приблизительно равно действию переменного тока напряжением 127 В и т. д. Такое соотношение сохраняется до напряжения 500 В, при более высоких напряжениях постоянный ток становится опаснее переменного с частотой 50 Гц.

Большое значение для исхода поражения имеет психическое состояние человека. Электрические удары легче переносятся здоровыми и физически крепкими людьми. Опасность поражения увеличивается при наличии заболеваний сердца, органов дыхания и нервной системы, а также в состоянии алкогольного или наркотического опьянения.

Установлено, что опасное действие электрического тока тем меньше, чем больше живая масса животного. Однако сопротивление их организма гораздо меньше, чем сопротивление организма человека, поэтому при одном и том же напряжении через организм животного проходит гораздо больший ток, чем через организм человека. Например, сопротивление организма крупного рогатого скота между передними и задними ногами составляет в среднем 400...600 Ом, а при падении животного снижается до 50...100 Ом в зависимости от влажности шерсти. Поэтому действие тока напряжением 25...30 В в течение 5 с поражает животных.

Наименее опасен для животных путь тока от одной задней конечности к другой. Установлено, что собаки остаются живыми при прохождении по этой петле тока напряжением 900 В в течение 12с. Однако даже небольшое постоянно действующее напряжение вызывает снижение продуктивности животных. Так, при напряжении 4...6 В молокоотдача у коров уменьшается на 20...40%.

98 :: 99 :: 100 :: 101 :: 102 :: Содержание

 

102 :: 103 :: Содержание

8.2. КЛАССИФИКАЦИЯ ЭЛЕКТРОУСТАНОВОК И ПОМЕЩЕНИЙ ПО ОПАСНОСТИ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Электроустановки классифицируют по напряжению: с номинальным напряжением до 1000 В и свыше 1000 В.

Безопасность обслуживания электрооборудования зависит от факторов окружающей его среды. С учетом этих факторов, а также их наличия или отсутствия все помещения по опасности поражения электрическим током делят на три класса:

первый — помещения без повышенной опасности, в которых отсутствуют признаки помещений двух других классов;

второй — помещения с повышенной опасностью, характеризующиеся хотя бы одним из перечисленных признаков: относительной влажностью воздуха, длительно превышающей 75 %; наличием токопроводящей пыли и токопроводящих полов (земляных, металлических, сырых деревянных и т. п.); высокой температурой воздуха, длительно превышающей 30 °С, или периодически (более одних суток) 35 °С, или более 40 °С кратковременно; возможностью одновременного прикосновения человека к металлическим корпусам электрооборудования с одной стороны и к соединенным с землей металлоконструкциям с другой;

третий — помещения особо опасные, характеризующиеся следующими признаками: относительной влажностью воздуха, близкой к 100 % (визуально определяют наличием конденсата на внутренней поверхности строительных конструкций зданий и помещений); химически агрессивной средой; наличием одновременно двух или более признаков помещений с повышенной опасностью.

К первому классу относят сухие отапливаемые помещения, в которых электроприборы установлены достаточно далеко от металлических частей систем отопления, канализации и водопровода (рабочие кабинеты, комнаты отдыха, цыплятники, инкубатории и т. п.); ко второму — животноводческие помещения с регулируемым микроклиматом, склады с земляными полами и т.п.; к третьему — кормоцехи, теплицы, склады пестицидов и удобрений, моечные, животноводческие помещения без устройств регулирования микроклимата.

102 :: 103 :: Содержание

 

103 :: 104 :: Содержание

8.3. КЛАССИФИКАЦИЯ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПО СПОСОБУ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Электротехнические изделия по способу защиты человека от поражения электрическим током делят на пять классов: 0, 0I, I, II, III.

К классу 0 относят изделия с номинальным напряжением более 42 В с рабочей изоляцией и не имеющих приспособлений для заземления (зануления). Такие изделия используют в качестве встроенных в другие, корпус которых заземлен. Бытовые приборы изготавливают по классу 0, так как они предназначены для работы в помещениях без повышенной опасности.

Класс 0I включает в себя изделия с рабочей изоляцией, элементом заземления (винт, болт). У провода для присоединения к источнику питания нет заземляющей жилы. В качестве элемента заземления нельзя использовать винты, болты или шпильки, предназначенные для крепления изделия или его составных частей.

Класс I включает в себя изделия с рабочей изоляцией, элементом для заземления и проводом питания с заземляющей (зануляющей) жилой и штепсельной вилкой с заземляющим контактом.

К классу II относят изделия, имеющие у всех доступных прикосновению частей двойную или усиленную изоляцию относительно частей, нормально находящихся под напряжением, и не имеющие элементов для заземления. Усиленной называют такую однослойную изоляцию, которая обеспечивает ту же степень защиты, что и двойная. Такую изоляцию применяют в тех случаях,

когда использование двойной изоляции по каким-либо причинам затруднено.

Класс III представляет собой изделия без внутренних и внешних электрических цепей с напряжением выше 42 В. При питании от внешнего источника изделия относят к классу III только в случаях, если их присоединяют непосредственно к источнику питания с напряжением не выше 42 В, у которого на холостом ходу оно не превышает 50 В, или если при питании через трансформатор или преобразователь частоты его входная и выходная обмотки не имеют между собой гальванической связи, а имеют двойную или усиленную изоляцию.

103 :: 104 :: Содержание

 

104 :: 105 :: 106 :: 107 :: 108 :: Содержание

8.4. АНАЛИЗ ОПАСНОСТИ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ В ЗАВИСИМОСТИ ОТ СХЕМ ВКЛЮЧЕНИЯ ЧЕЛОВЕКА В СЕТЬ

Все случаи поражения человека током в результате электрического удара — следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.

Двухфазное включение человека в цепь тока(рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение — линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.

I = Uл/Rч = √ 3Uф/Rч,

где Uл и Uф —линейное и фазное напряжение, В; Rчсопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).

Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.

Однофазное включение.На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.

 


Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока:
а — двухфазное прикосновение; б— однофазное прикосновение в сети с заземленной нейтралью; в — однофазное прикосновение в сети с изолированной нейтралью

 

В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле

Iч = U/(2Rч + r),

где U— напряжение сети, В; r — сопротивление изоляции, Ом.

В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда

Iч = Uф/(Ro + r/3),

где Rо — общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб — сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rnсопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г — сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).

В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,

Iч=Uф(Rо + Rн),

где RHсопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:

Iч≈UФ/R0.

На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В —более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.

Напряжение прикосновения.Оно возникает в результате касания находящихся под напряжением электроустановок или металлических частей оборудования.

Если электрический ток течет через стержневой заземлитель, погруженный в землю так, что его верхний конец расположен на уровне земли, то напряжение прикосновения, В,

где I3 — сила тока замыкания на землю, А; ρ — удельное сопротивление основания (грунта, пола и т. д.), на котором находится человек, Ом*м; l и d — длина и диаметр заземлителя, м; х — расстояние от человека до центра заземлителя, м; а — коэффициент напряжения прикосновения.

Тогда

α = Rч/(Rч + Rоб + Rn) = Rч/Rо.

Пренебрегая сопротивлением обуви (когда она мокрая или при ее отсутствии), можно записать для следующих случаев:

ступни ног удалены одна относительно другой на расстоянии шага

α=1/(1 + 1,5ρ/Rч);

ступни ног находятся рядом

α=1/(1 + 2ρ/Rч).

Шаговое напряжение.Это напряжение Uш на теле человека при положении ног в точках поля растекания тока с заземлителя или от упавшего на землю провода, где находятся ступни, когда человек идет в направлении заземлителя (провода) или от него (рис. 8.2).

Если одна нога находится на расстоянии х от центра заземлителя, то другая — на расстоянии х + а, где а — длина шага. Обычно в расчетах принимают а = 0,8 м.

Максимальное напряжение в этом случае возникает в точке замыкания тока на землю, а по мере удаления от нее оно снижается по закону гиперболы. Считают, что на расстоянии 20 м от места замыкания потенциал земли равен нулю.

Шаговое напряжение, В,

Uш =

Iзρa
2πx(x+a)

 

.

Даже при небольшом шаговом напряжении (50...80 В) может возникнуть непроизвольное судорожное сокращение мышц ног и,


Рис. 8.2. Схема возникновения шагового напряжения

 

как следствие этого — падение человека на землю. При этом он одновременно касается земли руками и ногами, расстояние между которыми больше, чем длина шага, поэтому действующее напряжение увеличивается. Кроме того, в таком положении человека образуется новый путь прохождения тока, затрагивающий жизненно важные органы. При этом создается реальная угроза смертельного поражения.

При уменьшении длины шага шаговое напряжение снижается. Поэтому, для того чтобы выбраться из зоны действия шагового напряжения, следует передвигаться прыжками на одной ноге или на двух сомкнутых ногах или как можно более короткими шагами (в последнем случае допустимым считают напряжение не более 40 В).

104 :: 105 :: 106 :: 107 :: 108 :: Содержание

 

108 :: 109 :: Содержание

8.5. МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Все существующие мероприятия, обеспечивающие безопасность использования электроэнергии, можно условно разделить на три группы.