Приклади типових індивідуальних навчальних завдань 11 страница

3) за допомогою табл. 11 – 12 (додаток 2.3.4) для заданого значення tк знаходять Кt та множать його на Ру1, отримуючи Рк:

Рк = Ру1. Кt.

4) визначив значення Рп та Рк, розраховується доза опромінювання без урахування захищеності рецептора (тобто дозу, яку отримав би рецептор, якщо опромінювався на відкритій місцевості) за допомогою формули:

.

5) якщо рецептор захищений від дії іонізуючого випромінювання, то здійснюється процедура корегування дози з урахуванням коефіцієнту ослаблення захисної споруди (об’єкту) − Косл, для цього:

Dкорег. = D/Косл.

 

Приклад прогнозування радіаційної обстановки на об’єкті.

Вихідні дані:

1. Інформація про АЕС:

тип ядерного енергетичного реактору (ЯЕР) − ВВЕР;

електрична потужність ЯЕР – W = 1 000, МВт;

кількість аварійних ЯЕР – n = 1;

координати ЯЕР – ХАЕС = 0 км, YАЕС = 0 км (початок прямокутної системи координат суміщений з центром АЕС, а вісь ОХ вибирається в напрямку вітру);

астрономічний час аварії – Тав = 12.00 год.;

частка викинутих з ЯЕР радіоактивних речовин – h = 50 %.

2. Метеорологічні умови:

швидкість вітру на висоті 10 м – u10 = 5 м/с;

напрям вітру на висоті 10 м – a10, град = 0;

стан хмарного криву небозводу – напівпохмуро, тобто 5 балів.

3. Додаткова інформація:

час, на який визначається поверхнева активність − ТЗ = 17.00 год..;

координати об‘єкту – X = 20 км, Y = 2 км;

час початку опромінювання – tпоч = 17.00 год.;

тривалість опромінювання – Tоп = 4 год.;

захищеність людей – Косл = 2.

Порядок прогнозування.

І. Визначення поверхневої активності (Аs) в заданій точці на сліді хмари, Кu/м2:

1) відповідно до погодних умов і заданому часу доби за допомогою табл. 2 (додаток 2.3.4) визначається категорія вертикальної стійкості атмосфери: категорія стійкості – D;

2) за допомогою табл. 3 (додаток 2.3.4) оцінюється середня швидкість поширення радіоактивної хмари: швидкість поширення – 5 м/с;

3) на схему (карту) місцевості спеціальною позначкою наносять АЕС з аварійним ядерним енергетичним реактором і, у відповідності з напрямом вітру, із центру АЕС чорним кольором проводять вісь сліду радіоактивної хмари;

4) на схемі (карті) вимірюють відстань (Х) вздовж вісі сліду від АЕС до заданого об‘єкту і її зміщення від осі за координатою Y : Х = 20 км; Y = 2 км;

5) у табл. 5 – 6 (додаток 2.3.4) для заданого типу ядерного енергетичного реактору, h = 10% і відстані від нього до об‘єкту (Х) знаходять потужність дози випромінювання на вісі сліду (РX.1) через 1 годину після аварії: Рх1 = 0,189, та множать її на величину − hзкор = 50/h, тобто на 5: отримуючи 0,945 рад/год.;

6) у табл. 7 – 9 (додаток 2.3.4) знаходять значення коефіцієнту (Ку), що враховує зміну потужності дози в поперечному перетині сліду (за координатою Y ): Ку = 0,09;

7) розраховують приведене значення заданого часу (час, що пройшов після аварії – tз): tз=Tз – Tав = 17,00 – 12,00 = 5 год.;

8) за допомогою табл. 10 (додаток 2.3.4) визначають час, що пройшов після аварії, початку формування сліду в районі об’єкту – tj: tj = 1,0 год.;

9) зрівнюють заданий час – tз і час початку формування сліду – tj:

10) якщо tз £ tj,, то Аs = 0;

11) якщо tз > tj, по табл. 11 – 12 (додаток 2.3.4) визначається коефіцієнт (Кt), враховуючий спад потужності дози випромінювання у часі: tз > tj = 5 год. > >1 год., тоді Кt = 0,63;

12) розраховують коефіцієнт (Кw), що враховує електричну потужність ядерного енергетичного реактору (W) і частку радіоактивних речовин, що викинуті з нього в результаті аварії (h): Kw=10 –4·n W·h = 10-4 1·1000·50 = 5;

13) у табл. 13 (додаток 2.3.4) для заданого часу tз знаходять значення коефіцієнту (Кзагр): Кзагр = 0,13;

14) визначають поверхневу активність Аs (щільність забруднення), Кu/м2:

As=Рx1 · Ky · Kt · Kw · Kзагр = 0,945·0,09·0,63·5·0,13 = 0,035 Кu\м2.

ІІ. Визначення дози опромінювання людей:

1) дозу опромінювання, що отримає населення на відкритій місцевості визначається за допомогою формули:

,

де Рк, tк та Рп, tп – потужності доз та час її виміру, що пройшов після викиду радіоактивних речовин з реактору, відповідно закінчення та початку опромінювання:

2) у табл. 11 – 12 (додаток 2.3.4) для заданого значення tп = 5 год. (17.00 – 12.00) знаходять Кt , який дорівнює 0,63 та множать його на Ру1, отримуючи Рn: Рп = 0,945·0,09·0,63 = 0,053 рад/год.;

3) у табл. 11 – 12 (додаток 2.3.4) для заданого значення tк = 9 (21.00 – 12.00) знаходять Кt, який дорівнює 0,46 та множать його на Ру1, отримуючи Рк: Рк = 0,945·0,09·0,46 = 0,039 рад/год.

4) розраховують дозу опромінювання, що отримують люди на відкритій місцевості: D = 1,7 (0,039·9 – 0,053·5) = 0,146 рад;

5) здійснюють корегування визначеної у п. 4 дози: в автомобілях люди отримають дозу опромінювання меншу у Косл разів. У нашому випадку Косл = 2. Тоді остаточна доза буде: Dавто = 0,146 / 2 = 0,073 рад.

Висновок: доза опромінювання людей становитиме 0,073 рада.

ІІІ. Оцінка радіаційної обстановки на об’єкті.

З нанесенням зон радіоактивного зараження на схему (карту) місцевості та визначення параметрів поля іонізуючого випромінювання на території об’єкту господарювання завершується процес виявлення радіаційної обстановки. В подальшому вона оцінюється шляхом рішення низки завдань, типовими з яких є такі:

1. Визначити, які наслідки перебування людей на зараженій радіоактивними речовинами території слід очікувати, якщо не здійснювати заходи радіаційного захисту?

Приклад постановки завдання.

Через 4 години після зруйнування ядерного реактору рівень радіації на території об’єкту становив 50 рад/год. Визначити величину поглиненої дози опромінювання, яку отримує рецептор (об’єкт опромінювання) у необмежений час.

Порядок проведення розрахунків.

Доза опромінення у необмежений час визначається за допомогою формули:

D¥ ≈ 5Р1;

де D¥ – доза опромінення до повного розпаду радіоактивних речовин, рад;

Р1 = КРt, рівень радіації через годину після аварії, рад/год.;

Кt – коефіцієнт, значення якого обирається у табл. 11, 12 (додаток 2.3.4) залежно від часу, що пройшов після аварії;

Рt – рівень радіації на заданий час, рад/год.

Отже, оскільки після зруйнування ядерного реактору пройде 4 години, коефіцієнт Кt = 1,43, відповідно рівень радіації Р1 становитиме 1,43·50 = 71,5 (рад/год.).

Тоді поглинена доза опромінення, яку отримає рецептор (об’єкт опромінення) до повного розпаду радіоактивних речовин, буде:

D¥ ≈ 5·71,5 = 357,5 рад.

Висновок: поглинена доза опромінення, яку отримає рецептор (об’єкт опромінення) до повного розпаду радіоактивних речовин – 357,5 рад.

2. Визначити, яку дозу опромінювання, а відповідно й ступінь ураження, отримають працівники, що діють за певних умов захищеності на зараженій радіоактивними речовинами місцевості.

Приклад постановки завдання. За умовами завдання 1 визначити поглинену дозу опромінювання, яку можуть отримати працівники об’єкту за перші 8 годин, якщо з початку зараження вони протягом 6 годин знаходилися у протирадіаційному укритті, а потім 2 години працювали на відкритій місцевості. Коефіцієнт ослаблення протирадіаційного укриття обумовлюється конструкцією його перекриття. Воно виконано з трьох шарів: шар бетону – 11,4 см; шар цегли – 8,1 см і шар ґрунту – 8,1 см.

Порядок проведення розрахунків.

Поглинена доза опромінювання яку можуть отримати робітники об’єкту розраховується за формулою:

D = DПРУ + DВМ ,

де DПРУ, DВМ – дози, які отримують люди у протирадіаційному укритті та на відкритій місцевості відповідно.

Приймають: РПРУср, РВМср – середній рівень радіації за час перебування людей в протирадіаційному укритті – tПРУ і на відкритій місцевості – tВМ; КОСЛ – коефіцієнт ослаблення іонізуючого випромінювання протирадіаційним укриттям.

Рівень радіації на відкритій місцевості через годину після аварії на АЕС становив: Р1 = 1,43·50 = 71,5 рад/год.

Визначають рівні радіації на відкритій місцевості Р4 через 4, Р10 через 10 та Р12 через 12 годин після аварії на АЕС:

Р4 = 50 рад/год – див. завдання 1.

Р10 = Р1·Кt10 = 71,5·0,52= 37,18 рад/год.

Р12 = Р1·Кt12 = 71,5·0,48= 34,32 рад/год.

Розраховують РПРУср та РВМср :

РПРУср = = (50+37,18)·0,5 = 43,59 рад/год.;

РВМср = = (37,18+34,32)·0,5 = 35,75 рад/год.

Визначають коефіцієнти ослаблення іонізуючого випромінювання перекриттям протирадіаційного укриття КОСЛпру,як найтоншого шару матеріалу, що перешкоджає поширенню гамма-квантів у бік людей:

КОСЛ пру = КОСЛ бетону · КОСЛ цегли · КОСЛ ґрунту.

КОСЛ = 2Х/h0,5, тут Х – товщина шару захисного матеріалу; h0,5 – товщина шару половинного ослаблення даним матеріалом гамма-випромінювання. Тоді, використовуючи дані табл. 14 (додаток 2.3.4), отримуємо:

КОСЛ бетону = 4; КОСЛ цегли = 2; КОСЛ ґрунту = 2; КОСЛ пру = 16; КОСЛ вм = 1.

Отримав необхідні дані, визначають поглинену дозу опромінювання працівників об’єкту:

D = DПРУ + DВМ = (РПРУср·6)/16 +ВМср·2)/1 = 43,59·6/16 + 35,75·2/1 = 16,3 + 71,5 = 87,8 рад.

Висновок: поглинена доза опромінення, яку можуть отримати працівники об’єкту становить 87,8 рада. Втрати людей не очікується. Можливі одиничні випадки прояви симптомів первинної реакції організму на опромінювання у легкій формі.

3. Визначити тривалість робіт за певних умов захищеності, якщо відомий рівень радіації в районі об’єкту та максимальна доза, яку працівники можуть отримати за час роботи.

Приклад постановки завдання. Якої тривалості повинен бути робочий день у працівників, що виконують обов’язки за призначенням в офісі підприємства (Косл = 7) і на відкритій місцевості, якщо роботи почнуться через 4 години після зруйнування ядерного реактору, а середній рівень радіації на цей час становитиме P = 20 рад/год. Максимальна доза, яку працівники можуть отримати за час роботи у добу Dекв = 7 бер.

Порядок проведення розрахунків.

В зв’язку з тим, що опромінювання працівників класифікується як зовнішнє і здійснюється від джерел, які викинуті із зруйнованого ядерного реактору, тобто бета-частинками та гамма-квантами, то можна вважати, що одиниці виміру максимальної дози опромінювання та дози, яка визначається розрахунками, еквівалентні за номіналами (коефіцієнт якості випромінювання для бета-частинок та гамма-квантів дорівнює одиниці).

Тоді, визначають допустиму тривалість робіт на підприємстві − Тпр, за допомогою формули:

Тпр = = = 2,45 год.

Для визначення допустимої тривалості робіт на відкритій місцевості виконують такі розрахунки:

Твм = = = 0,35 год.

Висновок: допустима тривалість робіт в офісі підприємства – 2,45 год.,

на відкритій місцевості – 0,35 год.

4. Визначити, яку дозу опромінювання, а відповідно й ступінь ураження, отримають працівники, що діють за певним режимом захищеності на зараженій радіоактивними речовинами місцевості.

Приклад постановки завдання. Визначити, яку дозу, а відповідно й ступінь ураження, може отримати людина за добу, у рік, якщо потужність експозиційної дози становить 0,011 мР/год., а режим діяльності на протязі доби такий: відпочинок в домашніх умовах − 9 год., робота в приміщенні адміністративних будинків− 8 год., користування транспортними засобами: автотранспортом – 2 год., електропотягом – 1 год., прогулянка на відкритій місцевості – 4 год.

Примітка: житлові будинки – цегляні п’ятиповерхові, а потужність експозиційної дози − const.

Розв’язання завдання.

Доза, яку отримує людина у добу визначається за допомогою формули: .

Якщо припустити, що потужність дози (Р) на протязі доби залишається постійною, а людина перебуває у цей час на відкритій місцевості, в будинках, на транспорті і в інших умовах, то ступінь її захищеності можна оцінити середньодобовим коефіцієнтом захищеності Кз, який розраховується за формулою:

К3 =24/ (t + t1 / К1 + t22 + ... + tn / Кn ),

де t− час перебування людини на відкритій місцевості, год;

t1, t2, t3, ... tn – час доби, протягом якого людина опромінюється в умовах відмінних від відкритої місцевості, год.;

К1, К2, K3, ... Кn − коефіцієнти ослаблення іонізуючого випромінювання об’єктів, в яких перебуватиме людина на протязі доби (табл. 15 додаток 2.3.4).

Тоді, за умов завдання середньодобовий коефіцієнт захищеності буде:

К3 = 24 (2+8 / 6 + 11 / 27 + 2 / 2+ 1 /3) ≈ 4,73;

а отримана людиною за добу доза становитиме:

= мР.

Нескладно визначити і річну дозу опромінювання, для чого добову дозу треба помножити на число діб у року:

Dрічна=Dдоба·365=0,056·365 = 20,44 мР.

Висновок: отримана людиною за добу доза становитиме 0,056 мР;

річна доза складе 22,44 мР.


ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ

імені ВАДИМА ГЕТЬМАНА

Кафедра регіональної економіки

 

З В І Т

про виконання завдання на практичному занятті

з навчальної дисципліни: „Безпека життєдіяльності”.

 

Тема 3.Техногенні небезпеки та їх реалізації.

Завдання на тему:Радіоактивність та життєдіяльність людини. (Виявлення шляхом прогнозу та оцінка обстановки в осередку ураження, що виникає при зруйнуванні об’єкту, небезпечного в радіоактивному відношенн)і.

Виконав: студент факультету ____________________________

______________________________________________________

_______курсу____________________________форми навчання

______________________________________________________

(Прізвище та ініціали)

 

Перевірив:_________________кафедри регіональної економіки

______________________________________________________

(Прізвище та ініціали)

 

 

КНЕУ – 201__


Навчальна та виховна мета:

1. Ознайомити студентів з основами методики виявлення та оцінки обстановки на об’єкті господарювання при загрозі виникнення (виникненні) надзвичайної ситуації, джерелом якої є об’єкт, небезпечний в радіоактивному відношенні.

2. Пробудити у студентів, як у майбутніх керівників колективів працівників, почуття відповідальності за забезпечення безпеки життя та діяльності людей в умовах надзвичайної ситуації.

Навчально-матеріальне забезпечення:

Література:

1. Панкратов О.М., Ольшанська О.В., Джог П.В., Черевко Д.Р. Безпека життєдіяльності людини у надзвичайних ситуаціях. Практикум. Ч. І – К.: КНЕУ, 2010. – 179 с.

2. Шоботов В.М. Цивільна оборона: Навчальний посібник. – Київ: ”Центр навчальної літератури”, 2004. – 439 с.

3. Методичні вказівки з курсу „Цивільної оборони”. –К.: КНЕУ, 1997. –135 с.

Наочні матеріали та технічні засоби:

· схема місцевості (за вказівками викладача);

· креслярсько-графічні інструменти (кольорові олівці, лінійка, циркуль, тощо);

· калькулятор.

Варіант № _______

1. Вихідні дані:

 

Суб’єкт небезпеки Об’єкт небезпеки Характеристика об’єкту небезпеки Значення параметру фактору ураження Характер діяльності персоналу Захищеність персоналу від фактору ураження Пора року Метеоумови
Температура повітря, 0С Швидкість вітру Наявність опадів
                   
                 
                 

 

2. Результати виконання прогнозування.

_______________ відбулася аварія на ____________________________.

(Дата час) (Найменування об'єкту)

О ____________________________________________________ піддався

(Час, дата, найменування об'єкту, району)

радіоактивному зараженню із загальною кількістю населення та персоналу __________________________________________ людей (або окремо за категоріями).

За даними виявленої обстановки _________________________________

(Сховища, споруди, будівлі)

опинилися в зоні, де рівні радіації досягають ________ рад/год.; захисні споруди і пункти управління (об'єкти в районі) – в зоні ______ , де рівні радіації _________ рад/ год.

Орієнтовні втрати від радіоактивного зараження можуть становити: робітників ____________ людей;

особового складу формувань ЦЗ об’єкту _______ людей;

населення ________ людей.

Маршрути висування сил і засобів для ліквідації надзвичайної ситуації __________________________________________________________________

(Вказати які маршрути)

до осередків ураження можна використовувати: №______ негайно №.____________ через ____________ годин після аварії і т.д.

 

Висновки і пропозиції:

1. На території ___________________________найскладніша радіаційна

(Найменування об'єкту, району)

обстановка склалася ________________________________________________,

(Вказуються ділянки місцевості, пункти і т.д.)

де рівні радіації на __________________ коливаються від ___________ до ___

(Час, дата)

_______________ рад/ год.

Ця обстановка вимагає проведення негайно наступних заходів:

__________________________________________________________________

(Визначити заходи і час їх проведення)

____________________________________________________________________________________________________________________________________

2. Рятувальні роботи

__________________________________________________________________ (Назвати об'єкти в районі)

почати через ________ годин в ________ зміни і закінчити їх до ________годин _____________________________________________________

Для проведення робіт залучити наступні формування: ____________________________________________________________________________________________________________________________________

3. Дозу опромінювання для особового складу аварійно-рятувальних формувань при виконанні робіт встановити на першу добу ______________ рад.

4. Для введення сил і засобів аварійно-рятувальних формувань в осередок ураження використовувати маршрути: _______________________, швидкість руху формувань ____________км/ год.

5. Режим захисту встановити: для робітників ______, населення __________________________________________________________________.

6. Тривалість робочої зміни в установах _______________годин.

7. Контроль опромінювання робітників, а також особового складу аварійно-рятувальних формувань здійснювати за допомогою дозиметрів, населення – розрахунковим способом.

Результати опромінювання людей за категоріями доповідати до ______ годин по стану на _____ годину. Пост дозиметричного контролю розташувати ______________________________________________________.

(Місце розташування поста дозконтролю)

8. Санітарну обробку людей проводити: часткову – поблизу робочих місць з періодичністю ____ годин з моменту зараження, повну – на пунктах спеціальної обробки, які розгорнути в _________________________________.

(Місце, час)

за адресою: _______________________________________________________.

9. Робітників і населення, що потрапили в зони небезпечного і надзвичайно небезпечного зараження через _____________________________

(Години, діб)

евакуювати в незаражені райони ______________________________________ __________________________________________________________________

(За якими маршрутами, вказати спосіб евакуації)

або в захисні споруди _______________________________________________

(Місце знаходження захисних споруд)

10. Першу допомогу ураженим проводити на протязі усього періоду ліквідації надзвичайної ситуації у вигляді само та взаємо допомоги із застосуванням ______________________________________________ засобів.

(Вказати яких засобів)

11. __________________________________________________________

(Пропозиції на власний розсуд)

__________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________

 

Студент __________курсу, ___________ навчальної групи

__________________________________________________

(Підпис, прізвище та ініціали)

Додаток 2.3.1

 

 

Додаток 2.3.2

 

Додаток 2.3.3

УВІДНА

про виникнення (можливість виникнення) радіоактивного зараження у регіоні, частина якого відображена на схемі (додаток 3.3.1)

 

В результаті землетрусу зруйновано ядерний реактор АЕС, що розташована поблизу населеного пункту АТОМГРАД.

З реактору викинуто у довкілля 30% напрацьованих радіоактивних матеріалів.

Метеорологічні умови реальні у день і часи заняття.

Виявити та оцінити радіаційну обстановку у підрозділах підприємства „Купон”, що розташовані в населених пунктах БЕЛЬЦИ, ДАЧІ і САДИ (див. схему додаток 2).

Запропонувати режими життєдіяльності населення та персоналу визначених об’єктів.

 

 

Додаток 2.3.4

Таблиця 1.

Характеристика зон радіоактивного зараження

місцевості при аваріях на АЕС

 

Найменування зони Індекс зони Доза опромінювання за 1-й рік після формування зони, рад Потужність дози випромінення через 1 год. після аварії, рад/год
на зовнішній межі на внутрішній межі в середині зони на зовнішній межі на внутрішній межі
Радіаційної небезпеки М 0,014 0,140
Помірного забруднення А 0,140 1,4
Сильного забруднення Б 1,4 4,2
Небезпечного забруднення В 4,2
Надзвичайно небезпечного забруднення Г - -

 

 

Таблиця 2.

Категорії стійкості атмосфери

 

Швидкість вітру на висоті 10м, м/с Час доби
день ніч
Наявність хмарності
Відсутня Середня Суцільна Відсутня Суцільна
V10<2 А А А А А
2<V10<3 А А D F F
3<V10<5 D D D D F
5<V10<6 D D D D D
V10>6 D D D D D

 

А—сильно нестійка (конвекція)

D –- нейтральна (ізотермія)

F— дуже стійка (інверсія)

 

Таблиця 3.

Середня швидкість вітру (Vср) у шарі від поверхні

землі до висоти переміщення центру радіоактивної хмари, м/с

 

Категорія стійкості атмосфери Швидкість вітру на висоті 10м (V10), м/с
менше 2 більше 6
А -- -- -- --
D -- --
F -- -- --

 

Таблиця 4.

Розміри зон радіоактивного зараження місцевості

на сліді хмари при аваріях АЕС