Величина ЭДС Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение ЭДС Eq

Как и синхронный двигатель, СК может работать в двух режимах: перевозбуждения и недовозбуждения. При перевозбуждении ЭДС СК больше напря-жения в точке его подключения

 

Eq > Uc.

 

Синхронный компенсатор генерирует в сеть реактивную мощность Ток СК опережает напряжение на 90. Векторная диаграмма режима перевозбуждения СК приведена на рис. 17.2 а.

Уменьшая ток аозбуждения, можно получить режим недовозбуждения. В этом режиме ЭДС СК меньше напряжения в точке его подключения Eq > Uc и ток СК отстает от напряжения на 90. Векторная диаграмма режима недовозбуждения СК приведена на рис. 17.2 б. В этом режиме СК потребляет реактивную мощ-ность, получая ее из сети.

 
 

Номинальная мощность СК указывается для режима перевозбуждения. В режиме недовозбуждения

 

Это связано, во-первых, с нагревом в лобовых частях СК – в режиме недовоз-буждения потоки складываются (рис. 17.2 б). Во- вторых, из-за нарушения устойчивой работы СК нельзя значительно снижать ток возбуждения.

Достоинства СК:

· возможность увеличения генерируемой мощности при снижении напряжения в сети за счет регулирования тока возбуждения;

· возможность плавного и автоматического регулирования реактивной мощности.

 

Батареи конденсаторов

 

Батареи конденсаторов применяются:

· для генерации реактивной мощности в узлах сети – поперечная компенсация. Батареи конденсаторов называют шунтовыми (ШБК);

· для уменьшения индуктивного сопротивления ЛЭП – продольная компенсация. Батареи конденсаторов называют устройствами продольной компенсации (УПК).

Шунтовые БК включают на шины ПС параллельно нагрузке, УПК включают в рассечку ЛЭП.

Батареи конденсаторов комплектуются из отдельных конденсаторов, которые соединяются последовательно и параллельно. Конденсаторы выпускаются в однофазном и трехфазном исполнении на номинальное напряжение от 0,22 до 10,5 кВ. Единичная мощность конденсаторов изменяется от 10 до 125 кВар. Увеличение напряжения достигается за счет увеличения числа последовательно включенных конденсаторов, увеличение мощности – за счет параллельного включения конденсаторов (рис. 17.3).

 
 

 

Число последовательно включенных конденсаторов определяется по формуле:

 

где UБК max – максимальное линейное напряжение в точке присоединения БК;

Uк ном – номинальное напряжение конденсатора;

kр – коэффициент, который учитывает разброс параметров конденсаторов, kр = 0,92 – 0,95.

Число последовательно включенных конденсаторов равно:

 

 

где QБК – требуемая мощность БК;

Qк ном – номинальная мощность конденсатора.

В сетях трехфазного тока конденсаторы включаются звездой и треугольником (рис. 17.4). Мощность батареи конденсаторов рассчитывается по формуле:

 

QБК = U2/XБК,

 

где U –напряжение в месте подключения батареи конденсаторов.

 

 
 

При соединении конденсаторов звездой мощность батареи равна

 

.

 

При соединении в треугольником при использовании таких же конденсаторов мощность БК будет

 

 

в три раза больше, чем при соединении конденсаторов звездой.

При соединении конденсаторов в звезду режим работы нейтрали БК определяется режимом работы нейтрали сети, где она установлена.

Батареи конденсаторов бывают регулируемые и нерегулируемые. В нерегулируемой БК число конденсаторов неизменно. В регулируемой БК в зависимости от режима работы часть конденсаторов можно отключать. Отключение может выполняться как вручную, так и автоматически. Так как сразу отключается часть конденсаторов, то мощность БК изменяется не плавно, а ступенчато. Регулирование бывает одноступенчатое и многоступенчатое. Одноступенчатое регулирование – это фактически нерегулируемая БК, так как можно включить или отключить сразу все конденсаторы. При многоступенчатом регулировании каждая секция БК снабжена контактором или выключателем.

При отключении конденсаторов они автоматически разряжаются на активное сопротивление, присоединенное к БК. В качестве разрядного сопротивления для конденсаторных установок 6-10 кВ используют активное сопротивление трансформаторов напряжения (рис. 17.5).

 

Для БК напряжением до 1 кВ используются специальные разрядные активные сопротивления. Разряжать БК нужно потому, что при ее отключении от сети, в конденсаторах остается электрический заряд и сохраняется напряжение близкое по значению к напряжению сети. При замыкании БК на разрядное сопротивление конденсаторы теряют электрический заряд, напряжение спадает до нуля. Этим обеспечивается безопасность обслуживания БК.

Преимущества:

· простота устройства и его обслуживания;

· отсутствие вращающихся частей дает безопасность обслуживания;

· малые потери активной мощности - 0,003 МВт/Мвар.

Недостатки:

· зависимость мощности БК от напряжения;

· ступенчатое регулирование мощности БК и ее напряжения;

· чувствительность к искажению кривой формы напряжения;

· недостаточная электрическая прочность конденсаторов и малый срок их эксплуатации.

 

Поперечная компенсация

 

 
 

Поперечная компенсация применяется для уменьшения перетоков реактивной мощности в сети. Батареи конденсаторов в этом случае подключают на шины 6-10 кВ подстанций параллельно нагрузке. Это приводит к уменьшению потерь мощности и напряжения во всей сети до точки подключения БК. Покажем это на примере простейшей сети (рис. 17.6).

 

 

Схемы замещения и распределение мощности до и после подключения БК показаны на рис. 17.7.

 
 

 

Векторные диаграммы токов и мощностей показаны на рис. 17.8

 
 

 

Векторная диаграмма напряжений приведена на рис. 17.9. Построение векторной диаграммы до использования батареи конденсаторов выполняется также как и для ЛЭП с одной нагрузкой в сети 35 кВ.

 
 

Для получения значения напряжения в начале передачи к напряжению в конце передачи нужно добавить падение напряжения от тока нагрузки в активном и реактивном сопротивлениях ЛЭП. На векторной диаграмме это треугольник авс. Величина фазного напряжения в начале передачи до подключения КУ равна U1 ф. Отрезок ас' численно равен потере напряжения в сети.

Достраиваем треугольник падения напряжения от тока БК в сопротивлениях ЛЭП. Это треугольник cde. Соединяем начало координат с точкой е и определяем величину фазного напряжения в начале ЛЭП после установки БК U1 ф с БК. По модулю U1 ф с БК меньшне напряжения U1 ф.

Величина потери напряжения после установки БК численно равна отрезку ае'. Сравниваем отрезки ас' и ае' и видим, что подключение БК приводит к уменьшению потери напряжения.

Из анализа можно сделать вывод, что при заданном напряжении в начале участка сети при установке БК улучшается режим напряжения в конце участка.

Оценим влияние величины мощности нагрузки. При малых нагрузках уменьшаются размеры треугольника авс. Если используется нерегулируемая БК, размеры треугольника cde остаются без изменений. В этом режиме напряжение в конце передачи может быть больше напряжения в начале передачи. Это недопустимо. Следовательно, нужно использовать регулируемые БК. Эффект регулирования тем больше, чем больше мощность БК и индуктивное сопротивление сети.

Таким образом, на векторных диаграммах видно, что величина тока, мощности и потери напряжения в линии электропередач, уменьшилась после подключения на шины потребителя батареи конденсаторов. Этот вывод следует и из расчетных формул:

 

Параметр Без БК С БК
     
Мощность
     
Ток
     
Потеря мощности      
Потеря напряжения

 

Продольная компенсация

 

Продольная компенсация применяется для уменьшения реактивного сопротивления ЛЭП. Компенсация обеспечивается последовательным включением в рассечку ЛЭП емкостного сопротивления в виде конденсаторов. Построим векторную диаграмму напряжений с УПК для следующей сети (рис. 17.10).

 

Векторная диаграмма напря-жений до применения УПК аналогична векторной диаграм-ме для ЛЭП с одной нагрузкой в сети 35 кВ (рис. 17.11). В результате построения получаем величину напряжения в начале передачи U. При введении УПК в рассечку ЛЭП уменьшается индуктивное сопротивление сети и составляющая падения в реактивном сопротивлении – отрезок bd вместо bc. Соединим начало координат с точкой d и получим вектор напряжения в начале передачи при использовании УПК. Оценим влияние УПК на составляющие падения напряжения.

Продольная (отрезок ас’ ) и поперечная (отрезок сс’ ) составляющие падения напряжения в исходной сети равны:

 

 

 

При компенсации:

· продольная (отрезок аd’ )

 

 

· поперечная (отрезок dd’ )

 

 

 
 

 

Из векторной диаграммы следует применение УПК приводит к уменьшению напряжения в начале передачи, продольной и поперечной составляющих падения напряжения.

Если подобрать УПК так, что Х = Хс, т.е обеспечить полную компенсацию индуктивного сопротивления ЛЭП, то падение напряжения будет определяться только величиной активного сопротивления ЛЭП

 

 

В этом случае напряжение в начале передачи будет равно отрезку ob.

Можно найти такое значение Хс, чтобы потеря напряжения в сети равнялась нулю. Если пренебречь поперечной составляющей падения напряжения, имеем

 

.

 

Найдем величину Хс:

 

;

 

.

 

По величине Хс подбирают мощность батареи конденсаторов. На практике чаще всего не применяют полную компенсацию и сопротивление УПК рассчитывают из потери напряжения, которая обеспечивает желаемый уровень напряжения в сети.

Из формулы для расчета потери напряжения с учетом УПК видно, что применение конденсаторов целесообразно при значительной реактивной составляющей тока, т.е. когда близок к единице. При малых значениях потеря напряжения в ЛЭП определяется в основном активным сопротивлением.

Достоинства УПК:

· автоматическое и безынерционное регулирование напряжения;

· отсутствие движущихся частей делает установки простыми и надежными в эксплуатации;

· при одинаковом регулирующем эффекте мощность БК, выбранной только для регулирования напряжения, меньше чем при поперечной компенсации.

Недостатки:

· возможны резонансные явления, которые вызывают качания роторов двигателей, мигание ламп накаливания;

· увеличение токов короткого замыкания;

· при коротких замыканиях возникает опасность появления на конденсаторах высокого напряжения. Поэтому для шунтирования БК при коротких замыканиях применяют быстродействующие разрядники.