вопрос. Коммутация каналов и коммутация пакетов

Независимо от того, обеспечивают ли они соединение между компьютерами или между компьютерами и терминалами, коммуникационные сети могут быть разделены на два основных типа: с коммутацией каналов и коммутацией пакетов. Сети с коммутацией каналов работают, образуя выделенное соединение (канал) между двумя точками Преимущество коммутации каналов заключается в ее гарантированной пропускной способности: как только канал создан, ни один сетевой процесс не уменьшит пропускной способности этого канала. Недостатком при коммутации каналов является ее стоимость: платы за каналы являются фиксированными и независимыми от трафика, низкий коэффициент использования каналов, повышенное время ожидания других пользователей - в узлах коммутации образуются очереди.

В сетях с коммутацией пакетов трафик сети делится на небольшие части, называемые пакетами, которые объединяются в высокоскоростных межмашинных соединениях. Пакет имеет идентификатор, который позволяет компьютерам в сети узнавать, предназначен ли он им, и если нет, то помогает им определить, как послать его в указанное место назначения. Главным преимуществом коммутации пакетов является то, что большое число соединений между компьютерами может работать одновременно, так как межмашинные соединения разделяются между всеми парами взаимодействующих машин. Недостатком ее является то, что всякий раз, когда сеть с коммутацией пакетов становится перегруженной, компьютеры, использующие сеть, должны ждать, пока они не смогут послать следующие пакеты.

Несмотря на потенциальный недостаток негарантируемой сетевой пропускной способности, сети с коммутацией пакетов стали очень популярными. Причинами их широкого использования являются стоимость и производительность. В связи с тем, что к сети может быть подключено большое число машин, требуется меньше соединений и стоимость остается низкой. Так как инженеры смогли создать высокоскоростное сетевое оборудование, с пропускной способностью обычно проблем не возникает.

Коммутация каналов:

--Аналоговые телефонные сети

--Цифровые сети с интегральными услугами (ISDN –Integrated Services Digital Network)

--Сети xDSL(Технологии xDSL основаны на превращении абонентской линии обычной телефонной сети из аналоговой в цифровую xDSL. Суть данной технологии заключается в том, что на обоих концах абонентской линии – на АТС и у абонента – устанавливаются разделительные фильтры):

-ADSL –асимметричное цифровое клиентское окончание

- SDSL–симметричное цифровое клиентское окончание

-RADSL–цифровое абонентское окончание с адаптируемой скоростью передачи

-VDSL–сверхбыстрое цифровое абонентское окончание

 

Коммутация пакетов

Протяженные телекоммуникационные сети с коммутацией каналов при разработке оптимизировались для достижения наилучших характеристик при передаче голоса, и подавляющая доля потока данных в этих сетях связывалась именно с голосовой передачей. Ключевая характеристика таких сетей в том, что ресурсы внутри сети выделяются под определенные телефонные вызовы. Для голосового соединения это не плохо, поскольку один из абонентов обычно говорит, и канал не простаивает. Можно сказать, что дуплексный канал при телефонной связи используется на 50%. Полоса пропускания для канала также оптимизирована и установлена как раз такой, чтобы можно было обеспечить приемлемое качество передачи речи. Однако при использовании таких телекоммуникационных сетей для передачи данных между компьютерами, появляются два очевидных недостатка.

1. При типовом соединении (например, терминал-хост) значительную часть времени канал связи может быть свободен. Но телекоммуникационная сеть выделяет вполне определенную полосу пропускания под этот канал и не может использовать его для другого приложения. Таким образом, подход с коммутацией каналов не эффективен.

2. В сетях с коммутацией каналов соединение обеспечивает передачу на постоянной скорости. Поэтому любой паре устройств терминал-хост будет предоставлена одна и та же фиксированная скорость, что ограничивает возможности сети при подключении разнообразных хостов и терминалов.

Сеть с коммутацией пакетов способна устранить эти недостатки. Данные в такой сети передаются в виде блоков, называемых пакетами (или кадрами). Обычно верхний предел длины пакета в зависимости от стандарта может быть от тысячи до нескольких тысяч байт.
Если устройство – источник передачи желает передать данные размером больше максимальной длины пакета, то данные разделяются на несколько пакетов, рис. 5.12.

Каждый пакет имеет поле данных, заголовок, другие служебные поля, расположенные в начале или в конце пакета. Поле заголовка, как минимум, включает информацию, необходимую узлу сети для перенаправления (маршрутизации) пакетов в нужный канал. Возможна буферизация пакетов на узле.

На рис. 5.13 показаны основные операции. Рабочая станция или другое сетевое устройство посылает сообщение (например, файл данных) в виде последовательности пакетов (а). Каждый пакет наряду с данными содержит управляющую и/или контрольную информацию, в частности, адрес станции назначения, или идентификатор маршрута. Пакет первоначально посылается на узел, к которому подключена передающая станция. Узел, получая пакет, опре­деляет по контрольной информации направление маршрута и на основание этого перенаправляет пакет в выходной порт соответствующего канала. Если связь между узлами по этому каналу исправна, пакет передается на соседний узел. Все пакеты последовательно “отрабатывают” свои пути, двигаясь через сеть к нужной станции назначения. Коммутация пакетов имеет несколько преимуществ над коммутацией каналов.

1. Эффективность использования линии при пакетной коммутации выше, поскольку один сегмент от узла к узлу может динамически распределять свои ресурсы между многими пакетами от разных приложений. Если на передающем узле пакетов, предназначенных для отправки по определенному каналу, собирается больше, чем емкость этого канала, то пакеты помещаются в буфер, и устанавливается очередность передачи пакетов. Напротив, в сетях с коммутацией канала время, предназначенное для каждого приложения, выделяется в виде определенного тайм-слота на основе синхронного временного мультиплексирования. Максимальная скорость передачи определяется полосой этого тайм-слота, а не всей полосой канала.

2. Сеть с пакетной коммутацией может осуществлять преобразование скорости передачи данных. Так способны обмениваться между собою пакетами станции, подключенные к соответствующим узлам сети каналами разной полосы пропускания.
3. Когда поток через сеть с коммутацией каналов возрастает, сеть может оказаться перегруженной, и в установлении каналов связи между новыми станциями может быть отказано. При перегруженности телефонной сети попытка дозвона может быть блокирована. В сетях с пакетной коммутацией при большой загруженности передача пакетов сохраняется, хотя и могут возникать задержки с доставкой пакетов, или может уменьшаться скорость передачи.

4. В сетях с пакетной коммутацией можно использовать систему приоритетов. Если узел хочет передать несколько пакетов, то он может, в первую очередь, передать пакеты имеющие наивысший приоритет. Пакеты с высоким приоритетом будут доставляться с меньшей задержкой, чем пакеты с низким приоритетом.
Пусть одна станция хочет послать сообщение другой в виде файла, размер которого превосходит максимальный размер пакета. Станция распределяет содержимое файла между несколькими пакетами и последовательно направляет пакеты в сеть. И здесь возникает вопрос, каким образом сеть должна обрабатывать эту последовательность пакетов, чтобы доставить их нужному адресату. В современных сетях с коммутацией пакетов используются два различных подхода, получившие название: дейтаграммные сети и сети с виртуальными каналами;

В дейтаграммной сети каждый пакет передается без ссылки на пакеты, которые идут до или после него, рис. 5.13.

 

Каждый узел на основании контрольной информации заголовка пакета и собственных данных об окружающих узлах сети выбирает следующий узел, на который перенаправляется пакет. Пакеты с одним и тем же адресом назначения могут следовать от станции отправителя к станции назначения разными маршрутами. Конечный узел маршрута восстанавливает правильную последовательность пакетов и уже в этой последовательности передает их станции назначения. В некоторых дейтаграммных сетях может отсутствовать функция упорядочения пакетов на выходном узле – тогда эту функцию берет на себя станция назначения. Пакет может повредиться при передаче по сети. Например, если один из узлов в сети вышел из строя, то все пакеты, находящиеся на этом узле в очереди на передачу, будут потеряны. Опять же, функцию обнаружения потерянных пакетов может брать на себя как конечный узел маршрута, так и станция-получатель. В такой сети каждый пакет передается независимо от остальных и называется дейтаграммой.

В сети с виртуальными каналами перед тем, как пакеты начинают идти, создается определенный маршрут следования. Это маршрут служит для поддержки логического соединения между удаленными станциями. Если маршрут установлен, то все пакеты между взаимодействующими станциями будут идти строго по этому маршруту, рис. 5.14. Поскольку на время логического соединения маршрут строго фиксирован, то такое логическое соединение в некоторой степени аналогично образованию канала в сетях с коммутацией каналов и называется виртуальным каналом. Каждый пакет теперь содержит идентификатор виртуального канала наряду с полем данных. Все узлы по маршруту знают, направлять такие пакеты – никакого решения по маршрутизации теперь эти узлы не принимают. В любое время каждая станция может установить один или несколько виртуальных каналов с другой станцией или станциями. Заметим, что виртуальный канал не является выделенным каналом, что было характерно для сетей с коммутацией каналов. Пакеты, двигаясь по виртуальному каналу, могут в случае перегруженности узла или сегмента помещаться в входные и выходные буферы на узлах . Главное различие с дейтаграммным подходом и классической маршрутизацией состоит в том, что в сетях с виртуальными каналами узел не принимает решение о отборе маршрута для каждого входящего пакета, а делает это (вернее, получает инструкцию перенаправлять пакеты с соответствующими идентификаторами маршрута) только один раз – на этапе формирования виртуального канала.

Преимущества сети с виртуальными каналами. Если две станции желают обмениваться Ними на протяжении длительного времени, то подход с использованием виртуальных каналов имеет определенные преимущества. Первое, сеть может поддерживать ряд служб, связанных с виртуальными каналами, включая порядок следования, контроль ошибок и контроль потока. Правильный порядок следования легко поддерживается, поскольку все пакеты двигаются одним и тем же маршрутом и прибывают в первоначально установленной последовательности. Служба контроля ошибок гарантирует не только то, что пакеты прибывают в нужной последовательности, но и то, что все пакеты на приемной стороне корректны. Например, если один из пакетов в последовательности, двигаясь от узла 4 к узлу 6 (рис. 5.14) потерялся или пришел на узел 6 с ошибкой, то узел 6 может послать запрос на узел 4 с просьбой по­вторить “соответствующий пакет последовательности. Служба контроля потока гарантирует, что отправитель не может “завалить” получателя данными. Например, если станция Е буферизует данные от станции А и видит, что приемный буфер близок к переполнению, то она может просигнализировать через обратный виртуальный канал о необходимости уменьшить или временно прекратить передачу данных от станции А. Второе преимущество этой сети со­стоит в том, что пакеты передаются через узел быстрее, когда узел не принимает решения о маршрутизации пакета.

Преимущества дейтаграммной сети. Первое – при передаче пакетов в дейтаграммной сети отсутствует фаза установления логического виртуального канала. Второе – дейтаграммная служба более примитивна и допускает большую гибкость. Например, если один из узлов в сети с использованием виртуальных каналов становится перегруженным, то “открытые” виртуальные каналы, проходящие через этот узел, невозможно перестроить. В дейтаграммной сети при перегрузке одного из узлов другие узлы могут перенаправить приходящие пакеты в обход перегруженного узла. Третье – доставка самой дейтаграммы более надежна. При использовании виртуальных каналов, если узел повреждается, все проходящие через него виртуальные каналы также разрушаются.

 

 

26 вопрос. Технологии беспроводных сетей включают в себя широкий диапазон решений, начиная от глобальных сетей передачи голоса и данных, позволяющих пользователю устанавливать беспроводные соединения на значительных расстояниях, и заканчивая технологиями инфракрасной и радиосвязи, используемыми на небольших расстояниях. Технологии беспроводных сетей применяются в портативных и настольных компьютерах, карманных компьютерах, сотовых телефонах и др.

1)Wi-Fi(Wireless Fidelity —«беспроводная точность») —стандарт на оборудование Wireless LAN, разработанный консорциумом Wi-Fi Alliance на базе стандартов IEEE 802.11.

WECA—объединение крупнейших производителей компьютерной техники и беспроводных устройств Wi-Fi

· Ad Hoc–децентрализованная Wi-Fi сеть (без точки доступа)

· Назначение: оперативное (временное)соединение компьютеров, объединение компьютеров в малом офисе/дома

Достоинства: простота организации, экономичность

Недостатки: низкая защищённость, невозможность подключения к составным сетям, до 256 абонентов

Инфраструктура– беспроводная сеть с использованием точки беспроводного доступа

· Возможности:

· -Подключение к другим сетям (в т.ч. проводным)

· -Выход в Интернет

· -До 2048 абонентов

Точка беспроводного доступа –сетевое устройство, являющееся центром беспроводной сети и выполняющее функции беспроводного концентратора

Шифрование Wi-Fi:

Стандарт Средства безопасности Недостатки
WEP RC4 шифрование, статические ключи Много брешей
WPA Использование различных ключей для разных сетевых устройств, обязательно аутентификация пользователя Временное решение на переходный период
WPA2 Криптостойкий алгоритм шифрования AES, аутентификация 802.1x Необходимость нового оборудования, нет обратной совместимости

 

- 2)IrDA(Infrared Data Association) –группа стандартов, описывающая протоколы передачи данных с использованием инфракрасного диапазона световых волн в качестве носителя

- Реализация:

- -Передатчик – светодиод

- -Приёмник(и) –фотодиод(ы)

3)Bluetooth—производственная спецификация беспроводных персональных сетей.

0 Скорость передачи:64 Кбит/с–2.1 Мбит/с

2При установке соединения –Bluetooth PIN (вводится на обоих устройствах)

3-Вычисление первичного ключа шифрования на основе PIN

4-Шифрование кадров по алгоритму E0

Открытые сведения: имя устройства, тип устройства, список услуг, технические сведения

 

1)Беспроводные глобальные сети (WWAN)

2)Беспроводные городские сети (WMAN)

3)Беспроводные локальные сети (WLAN)

4)Беспроводные персональные сети (WPAN)