Некоторые стандарты ITU-T, регламентирующие технологию xPON

В марте 2001 года появляется рекомендация G.983.3, добавляющая новые сущности в стандарт PON:

- передачу разнообразных приложений (голоса, видео, данные) – это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONT для подключения к абонентам;

- расширение спектрального диапазона – открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например, шировещательное телевидение на третьей длине волны (triple play).

За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).

APON сегодня допускает динамическое распределение полосы DBA (dynamic bandwidth allocation) между различными приложениями и различными ONT и рассчитан на предоставление как широкополосных, так и узкополосных услуг. Оборудование APON разных производителей поддерживает магистральные интерфейсы: SDH (STM-1), ATM (STM-1/4), Fast Ethernet, Gigabit Ethernet, видео (SDI PAL), и абонентские интерфейсы E1 (G.703), Ethernet 10/100Base-TX, телефония (FXS).

Из-за широковещательной природы прямого потока в дереве PON и потенциально существующей возможности несанкционированного доступа к данным со стороны ONT, которому эти данные не адресованы в APON предусмотрена возможность данных в прямом потоке с использованием техники шифрования с открытыми ключами. Необходимости в шифровании обратного потока нет, поскольку OLT находится на территории оператора.

EPON.В ноябре 2000 года комитет LMSC (LAN/MAN standards committee) IEEE создает специальную комиссию под названием “Ethernet на первой миле” (EFM, Ethernet in the first mile) 802.3ah, реализуя тем сам пожелания многих экспертов построить архитектуру сети PON, наиболее приближенную к широко распространенным в настоящее время сетям Ethernet. Параллельно идет формирование альянса EFMA (Ethernet in the first mile alliance), который создается в декабре 2001 г. Фактически альянс EFMA и комиссия EFM дополняют друг друга и тесно работают над стандартом. Если EFM концентрируется на технических вопросах и разработке стандарта в рамках IEEE, то EFMA больше изучает индустриальные и коммерческие аспекты использования новой технологии. Цель совместной работы – достижение консенсуса между операторами и производителями оборудования и выработка стандарта IEEE 802.3ah, полностью совместимого с разрабатываемым стандартом магистрального пакетного кольца IEEE 802.17. Комиссия EFM 802.3ah должна стандартизировать три разновидности решения для сети доступа.

Таблица 3.1 - Основные сведения стандарта PON G.983.1

 

EFMC (EFM copper) –решение “точка-точка” с использованием витых медных пар. На сегодняшний день работа по этому стандарту практически завершена. Из двух альтернатив, между которыми развернулась основная борьба – G.SHDSL и ADSL+ - выбор был сделан в пользу G.SHDSL.

EFMF (EFM fiber) –решение, основанное на соединении “точка-точка” по волокну. Здесь предстоит стандартизировать различные варианты: “дуплекс по одному волокну, на одинаковых длинах волн”, “дуплекс по одному волокну, на разных длинах волн”, “дуплекс по паре волокон”, новые варианты оптических приемопередатчиков. Подобные решения уже несколько лет предлагаются рядом компаний как “proprietary”. Пришло время их стандартизировать.

EFMP (EFM PON) – решение, основанное на соединении “точка-многоточка” по волокну. Это решение, являющееся по сути альтернативой APON, получило схожее название EPON.

В настоящее время разработка стандартов 802.3ah в том числе EFMP находится на завершающей стадии, а принятие ожидается уже в этом году. Аргументы в пользу технологии EPON подкрепляются ориентацией сети Internet исключительно на протокол IP и стандарты Ethernet.

GPON.Архитектуру сети доступа GPON (Gigabit PON) можно рассматривать как органичное продолжение технологии APON.

При этом реализуется как увеличение полосы пропускания сети PON, так и повышение эффективности передачи разнообразных мультисервисных приложений.

Стандарт GPON ITU-T Rec. G.984.3 GPON был принят в октябре 2003 г.

 

Таблица 3.2 - Сравнение технологий APON, EPON, GPON

 

 

GPON предоставляет масштабируемую структуру кадров при скоростях передачи от 622 Мбит/с до 2,5 Гбит/c, поддерживает как симметричную битовую скорость в дереве PON для нисходящего и восходящего потоков, так и ассиметричную и базируется на стандарте ITU-T G.704.1 GFP (generic framing protocol, общий протокол кадров), обеспечивая инкапсуляцию в синхронный транспортный протокол любого типа сервиса (в том числе TDM).

Исследования показывают, что даже в самом худшем случае распределения трафика и колебаний потоков утилизация полосы составляет 93% по сравнению с 71% в APON, не говоря уже о EPON.

Если в SDH деление полосы происходит статично, то GFP (generic framing protocol), сохраняя структуру кадра SDH, позволяет динамически распределять полосу.

APON

А теперь – немного чисто технической конкретики о том, как работают сети PON. В качестве примера взята разновидность APON.
Взаимодействие абонентского узла с центральным начинается с установления соединения. После чего происходит передача данных. Все это выполняется в соответствии с протоколом APON MAC. В процессе установления соединения запускается процедура ранжирования (ranging), которая включает в себя: ранжирование по расстоянию, ранжирование по мощности и синхронизацию. Центральный узел, словно дирижер, обеспечивает слаженную работу всех абонентских узлов – оркестрантов.

APON MAC - протокол взаимодействия центрального узла с абонентскими.Протокол MAC для систем доступа APON решает три задачи:

- исключение коллизий между передачами в обратном потоке;

- четкое, эффективное, динамическое деление полосы обратного потока;

- поддержание наилучшего согласования для транспорта приложений, инициированных конечными пользователями.

Протокол APON MAC основан на механизме запрос/разрешение. Основная идея состоит в отправке со стороны ONT запросов на требуемую полосу. На основании знаний о том, как загружен обратный поток, и какие услуги a priori закреплены за тем или иным ONT, OLT принимает решение по обработке эти запросов.

Процедуры ранжирования.В основе инициализации сети PON лежат три процедуры: определение расстояний от OLT до разных ONT (distance ranging); синхронизация всех ONT (clock ranging); и определение при приеме на OLT интенсивностей оптических сигналов от разных ONT (power ranging).

Ранжирование по расстоянию.Ранжирование по расстоянию (distance ranging) – определение временной задержки, связанной с удалением ONT от OLT – выполняется на этапе регистрации абонентских узлов, и требуется для того, чтобы обеспечить безколлизионный транспорт и создать единую синхронизацию в обратном потоке.

Сначала администратор сети заносит в OLT данные о новом ONT, его серийный номер, параметры предоставляемых ONT услуг. Затем после физического подключения к сети PON этого абонентского узла и включения питания на нем, центральный узел начинает процесс ранжирования. Ранжирование с ONT, который прописан в реестре OLT происходит каждый раз при включении ONT. При выключении и включении питания на OLT ранжирование происходит со всеми зарегистрированными ONT.

ОLT, посылая сигнал ранжируемому ONT, слушает отклик от него и на основании этого вычисляет временную задержку на двойном пробеге RTT (round trip time), затем в прямом потоке передает ONT вычисленное значение. На основании этого абонентский узел ONT вносит соответствующую задержку, которая предшествует началу отправки кадра в обратном потоке. Абонентские узлы, находящиеся на разном расстоянии будут вносить разные задержки. При этом одинаковой по всем абонентским узлам будет сумма вносимой аппаратной задержки и задержки распространения светового сигнала по оптическому пути от ONT к OLT.

С учетом того, что расстояния OLT-ОNT могут изменяться в больших пределах (стандарт G.983.1 определяет диапазон 0-20 км), оценим возможные вариации задержки. Если учесть, что скорость света в волокне составляет 2*105 км/c, то приросту расстояния OLT-ONT на 1 км будет соответствовать увеличение времени задержки на двойном пробеге на 10 мкс. А для расстояния 20 км RTT составит 0,2 мс. Фактически это минимальное теоретическое время, которое требуется OLT, чтобы выполнить ранжирование с одним ONT. Ранжирование по расстоянию большего числа абонентских узлов происходит последовательно и требует пропорционального возрастания суммарного времени ранжирования. В течение этого времени обратный поток не может использоваться для передачи данных другими ONT.

После того, как ранжирование по расстоянию выполнено, OLT на основании прописанных услуг для каждого ONT и с использованием протокола МАС принимает решение, какому абонентскому узлу передавать в каждом конкретном временном слоте.

Заметим, что общая задержка при отправлении кадра в обратный поток вносится не только конечным временем распространения сигнала по волокну, но и элементами электроники OLT и ONT. Задержка со стороны последних может испытывать небольшой дрейф, например вследствие колебаний температуры оборудования. По этому на этапе передачи данных OLT сообщает ONT о небольших подстройках задержки, вносимой в обратный поток – микроранжирование (micro ranging). В результате точность, с которой стабилизируются отправляемые кадры от разных ONT, составляет 2–3 бита.

Ранжирование по мощности.Ранжирование по мощности (power ranging) – изменение порога дискриминации фотоприемника с целью повышения чувствительности фотоприемника или во избежании его нежелательного насыщения. Поскольку ONT удалены на разные расстояния от OLT, то и вносимые потери в оптические сигналы, при распространении по дереву PON будут разными. Это может привести к нарушению работы фотоприемников из-за слабости сигнала либо из-за перегрузки.

Возможны два варианта выхода из сложившейся ситуации – либо подстраивать мощность передатчиков ONT, либо подстраивать порог срабатывания на фотоприемнике OLT. Был выбран второй вариант как более надежный.
Подстройка порога срабатывания фотоприемника OLT происходит каждый раз при получении нового пакета ATM из обратного потока по преамбуле на основе измерения интегральной мощности в преамбуле пакета.

Подстройка по мощности также необходима на всех ONT. Она выполняется аналогичным путем, но только один раз прежде чем синхронизировать приемник на для работы с синхронным TDM потоком от OLT. Затем непрерывно подсчитывается интегральная мощность на ONT, и делается плавная подстройка порога дискриминации фотоприемника.

Синхронизация.Синхронизация или ранжирование по фазе (phase ranging) необходима как для прямого, так и для обратного потока.

Абонентские узлы ONT синхронизируются вначале своей инициализации и затем все время поддерживают синхронизацию, подстраиваясь под непрерывный TDM трафика от OLT, и осуществляя, как принято называть, синхронный прием данных.

Напротив центральный узел OLT синхронизируется каждый раз по преамбуле вновь приходящего пакета ATM. Знания вычисленной на этапе ранжирования по расстоянию временной задержки со стороны ONT, отправившего этот пакет, здесь не достаточно – требуется большая точность. Метод приема данных с синхронизацией по преамбуле принято называть асинхронным. Синхронизация по преамбуле аналогична решению в технологии десятимегабитного Ethernet с размером преамбулы 64 бита (8 байт). Однако сохранить такого же размера преамбулы для относительно небольшого пакета ATM (в обратном потоке) означало бы кране неэффективное использование полосы. Для технологии APON была разработана новая методика синхронизации, основанная на методе CPA (clock phase alignment), позволяющая провести необходимую синхронизацию по получению всего трех бит! Больший размер преамбулы пакета ATM в обратном потоке был выбран постольку, поскольку преамбула также несет функцию обеспечения процедуры ранжирования по мощности.

Структура кадра APON для прямого и обратного потока.Для управления механизмом запрос/разрешение, FSAN определил структуру кадра APON для прямого и обратного потока. Этот формат был стандартизирован ITU-T в рекомендации G.983.1. На рис. 3.6 представлен формат кадра APON для симметричного режима трафика 155/155Мбит/c. Кадр прямого потока состоит из 56 ячеек ATM по 53 байта. Кадр обратного потока состоит из 52 пакетов ATM по 56 байт и одного слота MBS общей длины также 56 байт, рассмотренного ниже.

Прямой поток.Разрешения на передачу посылаются пачками (bursts) в специальных служебных ячейках ATM – двух на один кадр, которые называются ячейками работы и обслуживания физического уровня PLOAM (physical layer operation and maintenance). Они следуют строго регулярно, чередуясь с 27 ячейками данных. В одной ячейке PLOAM размещается 26 разрешений для ONT, каждое на передачу всего одного (!) пакета ATM. Оставшиеся 54 ячейки в кадре прямого потока несут данные и не задействуются для работы механизма запрос/разрешение.

Обратный поток.Обратный поток представляет совокупность пачек данных (bursts) от разных ONT. Абонентский узел может передавать данные только после получения соответствующего разрешения прочитанного из ячейки PLOAM. Пачки данных от ONT в APON передаются пакетами ATM. Единственное отличие пакета ATM от ячейки в том, что пакет имеет дополнительно преамбулу 3 байта. Таким образом длина пакета ATM 56 байт. Преамбула не нужна для ячеек в прямом потоке из-за синхронного режима приема данных, как указывалось выше. Первые два бита преамбулы не содержат оптического сигнала, что является достаточным для устранения перекрытие пакетов от разных ONT – в линии неизбежны небольшие колебания задержки при распространении сигнала.

Если принять во внимание, что разрешение на передачу необходимо для каждого пакета ATM, то суммарное число прописанных в ячейках PLOAM разрешений за продолжительное время должно соответствовать числу пакетов ATM, испущенных всеми ONT за это время. Почему в PLOAM помещается 26 разрешений? Две ячейки PLOAM могут дать разрешения на передачу 52 пакетов ATM, ровно столько, сколько их есть в кадре ATM для обратного потока.

 

 

Рис. 3.6. Структура кадра АТМ

Слот MBS.Слот многократных запросов MBS (multi burst slot) в обратном потоке является служебным. Он информирует OLT о характере запросов по передаче со стороны ONT. Этот слот имеет 8 подполей или минислотов, соответствующих различным ONT (рис. 3.7). Если система PON рассчитана на 32 абонентских узла, то передать свои сведения о запросах на передачу все 32 ONT смогут только после четырех последовательно переданных слотов MBS, что составляет цикл. В системе из 64 ONT, цикл состоит из восьми слотов MBS. Передача одного кадра при скорости 155 Мбит/с длится 0,15 мс. На передачу всего цикла при 32 ONT потребуется 0,6 мс Другими словами, с периодичностью 0,6 мс ONT посылает служебные запросы о намерениях передавать. Запрос ONT посылает, когда в его выходном буфере сформировалась очередь для передачи. Поскольку ОNT сможет передавать только после получения разрешения в ячейке PLOAM, то чтобы оценить максимальное время с момента, кода в буфере подготовлена очередь, до момента начала передачи, следует к времени цикла 0,6 мс добавить задержку на двойном пробеге RTT (для сети с радиусом 20 км RTT составляет 0,2 мс), и получается 0,8 мс. К этому значению могут быть добавлены аппаратные задержки на OLT и ONT.

Минислот состоит и 4-х полей: преамбулы (3 байта), аналогичной преамбуле в пакете ATM; двух полей ABR/GFR и VBR, длиной 8 и 16 бит, соответствующих двум типам запросов на полосу; поля контрольной суммы CRC (8 бит).

Надежность и резервирование в APON.Слабой стороной систем доступа APON с топологией простого дерева является отсутствие резервирования. Самым неблагоприятным в этом случае мог бы быть сценарий с повреждением волокна, идущего от OLT к ближайшему разветвителю (фидерного волокна). Теряет связь весь сегмент, подключенный по этому волокну – десятки абонентских узлов, сотни абонентов остаются без сети.

 

Рис. 3.7. Слот MBS

Среднее время ремонта (MTTR, Mean Time To Repair) может варьироваться в больших пределах от нескольких дней до нескольких недель в зависимости от оператора. В указанном случае однократного повреждения волокна наиболее отчетливо проявляется недостаток сети PON по сравнению с кольцевой топологией SDH.

Поэтому в уже в первой рекомендации G.983.1 в приложении IV обсуждался вопрос о построении защищенных систем APON. В силу специфики топологии PON, эта задача не является столь простой как в кольцевых топологиях SDH, поскольку полоса обратного потока в PON является общей и формируется множеством абонентских узлов. В рекомендациях G.983.1 предложено было изучить четыре различных топологии. Только две из них окончательно были выбраны для проработки в более поздней рекомендации G.983.5.

На рис. 3.8-3.10 показаны основные варианты построения резервных систем PON. Первое решение (рис. 3.8) обеспечивает частичное резервирование со стороны центрального узла. Для реализации данного решения требуется разветвитель 2´N. Центральный узел оснащается двумя оптическими модулями LT-1 и LT-2, в которых происходит терминирование двух волокон. В нормальном режиме при отсутствии повреждений волокон основной канал является активным, и по нему организуется дуплексная передача.

Резервный канал – неактивный – лазерный диод на LT-2 выключен. Фотоприемник на LT-2 при этом может прослушивать обратный поток. Если повреждается идущее от центрального узла волокно основного канала, то автоматически активизируется приемо-передающая система LT-2, и на нее переключается модуль мультиплексирования, коммутации и кросс-коннекта на OLT, обеспечивая транспорт от интерфейсов магистрали.

Для повышения надежности целесообразно брать фидерные волокна от разных, физически разнесенных оптических кабелей.

 

 

Рис. 3.8. Частичное резервирование со стороны центрального узла

 

Частичное резервирование со стороны абонентского узла (рис. 3.9) позволяет повысить надежность работы абонентского узла. В этом случае требуется два оптических модуля LT-1 и LT-2 на абонентский узел. Переключение на резервный канал происходит аналогично предыдущему варианту. При резервировании абонентских узлов не обязательно подключать все абонентские узлы по резервному потоку. Различие по стоимости абонентских узлов с резервированием (два модуля LT-1 и LT-2 ) и без него (один модуль LT) позволяет дифференцированно предлагать услуги различным категориям абонентов.

На рис. 3.10 показан вариант с полным резервированием системы PON. Система становится устойчивой как к выходу из строя приемо-передающего оборудования OLT и ONT, так и к повреждению любого участка волоконно-оптической кабельной системы.

 

 

Рис. 3.9. Частичное резервирование со стороны абонента

 

Информационные потоки на ONT генерируются одновременно обеими узлами LT-1 и LT-2 и передаются в два параллельных обратных потока. На OLT только одна версия двух копий сигналов передается дальше на магистраль. Аналогично происходит дублирование трафика в прямом потоке. При повреждении волокна или приемо-передающих интерфейсов переключение на резервный поток будет очень быстрым и не приведет к прерыванию связи.

 

 

Рис. 3.10. Полное резервирование

 

Первое решение, кроме того, что оно обеспечивает только частичное резервирование, требует большого времени на реконфигурацию при повреждении волокна. Основной вклад в задержку вносит прогрев лазера на OLT (LT-2) и выполнение процедуры ранжирования. Практически трудно не выйти за пределы 50 мс, одного из требований, сформулированных в рекомендации G.983.5.
Вывод. Для рассмотренных конфигураций, предлагаемых ITU-T, практически только решение с полным резервированием удовлетворяет всем требованиям и представляется наиболее привлекательным.

 

 

Глава 4. РАСЧЕТ УЗЛОВ И МОНИТОРИНГ ПАССИВНОЙ ОПТИЧЕСКОЙ СЕТИ

 

 

4.1 Требования к сети и ее энергетический бюджет

4.2 Оптические потери в сети PON

4.3 Потери в разветвителях

4.4 Расчет участка сети

4.5 Мониторинг пассивных оптических сетей

4.6 Структурная схема сети мониторинга