Как человеческий глаз видит цвета

В человеческом глазе присутствуют два вида рецепторов: палочки и колбочки. Палочки реагируют на оттенки серого, а с помощью колбочек мозг способен воспринимать спектр цветов. Существует три типа колбочек: первые реагируют на красно-оранжевый цвет, вторые - на зеленый, а третьи - на сине-фиолетовый. Когда стимулируется только один тип колбочек, мозг видит только один соответствующий цвет.

Таким образом, если стимулируются наши "зеленые" колбочки - мы видим "зеленый" цвет. Если красно-оранжевые - "красный". Если одновременно стимулировать зеленые и красно-оранжевые колбочки, мы видим желтый цвет. Глаз не способен отличить настоящий желтый цвет от некоей комбинации красного и зеленого. То же самое касается нашего восприятия таких цветов как циан, фуксин и прочих межспектральных цветов.

Из-за такого физиологического свойства нашего глаза, мы можем его "обмануть", представив полную гамму видимых цветов путем пропорционального смешивания всего лишь трех: красного, зеленого и синего.

 


Кривые чувствительности к спектру трех типов колбочек человеческого глаза

 

Определение основных цветов

Разложив любой цвет с помощью призмы можно определить составляющие его красный, зеленый и синий цвета (основные аддитивные цвета), либо циан, фуксин и желтый (основные субтрактивные цвета). Этот простой, но показательный прием позволяет определить настоящие основные цвета. Чем точнее мы знаем, какие цвета являются основными, тем больше вторичных цветов с их помощью мы можем воспроизвести.

 

 

Просматривая эти круги через призму мы можем увидеть основные цвета. Круг на белом фоне
разлагается на комбинацию Циан/Фуксин/Желтый. Тот же круг на черном фоне разлагается
на комбинацию Красный/Зеленый/Синий.

Аддитивный и субтрактивный цвет

Телевизоры, камеры, сканеры, мониторы компьютеров основаны на аддитивной системе воспроизведения цветов (RGB), где красный (R), зеленый (G) и синий (B) в комбинации создают белый. Офсетная печать, цифровая печать, краски, пластик, ткань и фотография основаны на субтрактивной системе цвета (CMY/CMYK), где смесь циана (C), фуксина (M) и желтого (Y) создают черный цвет (K).

Уникальность COLORCUBE состоит в том, что в нем обе системы объединены в одну модель. Чтобы переключиться из системы RGB в систему CMYK, достаточно всего лишь повернуть куб.

 

Оси RGB и CMY помещенные в одно и то же пространство опорных цветов. Вид извне.

 

Цветовые модели

С каждым новым успехом в теории цвета появляется новая модель, с помощью которой излагается эта новая теория. К сожалению, приверженцы старых цветовых моделей редко когда обращают внимание на новые модели. Например, популярный сейчас цветовой круг мало чем отличается по внешнему виду и работе от того, что был представлен сэром Исааком Ньютоном. Художники, опираясь на этот круг, по-прежнему неправильно считают основными цветами красный, желтый и синий вопреки тому факту, что такие технологии как офсетная печать и фотография, которым уже более ста лет, базируются на трехмерной системе цвета, где основными цветами являются циан, фуксин и желтый.

В число прочих моделей, используемых специалистами в различных отраслях, являются: Hue/Saturation/Value (HSV), карты CMYK, система RGB, система цветов Pantone, система CIE, стандартные цвета DIN и карты спектрального свечения.

Компьютеры и прочие цифровые устройства определяют цвет, основываясь на новой цветовой модели, которая называется COLORCUBE. Она охватывает область цифрового представления цвета.