Х-сотая серия нержавеющих сталей

Компания Cold Steel, прежде чем начать использовать AUS-8, продавала многие свои изделия под маркировкой "400 Series Stainless". Другие производители ножей также иногда используют этот термин. На самом деле обычно под этим термином скрывается недорогая сталь 440А,хотя ничто не ограничивает компанию в использовании любой другой стали марки 4хх, например, 420 или 425М, и называть это "сталь 400-сотой серии".

ДРУГИЕ МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ В ПРОИЗВОДСТВЕ НОЖЕЙ (КРОМЕ СТАЛИ):

Кобальт-Стеллит 6К

Это гибкий материал с очень высокой износостойкостью, чаще всего устойчив к коррозии. Стеллит 6К - это сплав кобальта. Дэвид Бойе (David Boye) использует кобальт для изготовления ножей подводника.

Стеллит/Талонит (кобальтовый хромвольфрамовый сплав)Интересный материал для клинков ножей, так как не содержит железа, а следовательно, с технической точки зрения, это не сталь. Стеллит - это литой суперсплав кобальта с добавками хрома, вольфрама и молибдена, в необходимой пропорции. Его очень сложно резать и шлифовать, зато он вообще не ржавеет и держит заточку вечно (конечно, не вечно, но очень долго). Некоторые самоотверженные изготовители ножей используют стеллит, но достаточно редко, так как с ним тяжело работать. Этот материал - не для слабого сердца! Титан

Новейшие титановые сплавы могут обладать твердостью до 50 единиц, и это позволяет использовать их для изготовления режущих деталей. Титан потрясающе устойчив к коррозии, а также не намагничивается. Широко используется в дорогих ножах для подводников благодаря тому, что военные морские десантники использует его для работы с минами, детонирующими при приближении металла. Также титан используется в ножах выживания. Тигрис (Tygrys) производит ножи со стальной сердцевиной, закрытой слоями титана.

Керамика

Лезвие на некоторых ножах действительно делают керамическими. Чаще всего эти клинки очень хрупкие и не могут быть заточены самостоятельно. Однако, они хорошо держат заводскую заточку. Такие ножи делают компании Бёкер (Boker) и Куошира (Kyocera). Кевин МакКланг (Kevin McClung) недавно выпустил композитный нож с использованием керамики - гораздо более прочный, чем другие керамические ножи, и вполне подходящий для большинства обычных работ, а также возможный к заточке в домашних условиях, и при этом неплохо держит заточку. Обыденное представление о керамике заключается в том, что она легко бьется и сложна в заточке. Иногда я делаю керамические клинки, но этот материал требует гранильного оборудования, алмазных инструментов и фундаментальных знаний теории работы с камнями. Это очень тяжелое производство.
Лезвие будет держать заточку неограниченно долго, но керамика не такая упругая, как любая из марок стали. Материал, который я использую, YTZAP (Иттриевый поликристаллический титанциркониевый ангидрид с окисью алюминия) более пластичен, чем я думал раньше. Я считаю, что у керамики есть будущее, но скорее всего не в производстве авторских ножей и не сегодня.

 

Мнения и факты россыпью

Сталь ножей кованных из полотна пилы возможно L6.

UHB17VA предназначена для клапанов воздушных компрессоров - т.е. хорошо держит поверхность при простоянных нагрузках, хорошо закаливается до заданной твердости и держит ее.

O-1 и W-2 сильно ржавеют и ножей из них делать не стоит

D-2 прекрасно держит заточку но слишком хрупка для рубки

A-2 особо хороша для рубки - боевых и полевых ножей.

440A обычно именуется хирургической сталью. Очень хорошая устойчивость к коррозии - используется в ножах для аквалангистов.

440B лучше чем 440A за счет большего содержания углерода, но реже используется.

У 440C хорошая устойчивость к коррозии и хорошо держит заточку Используется в ножах для аквалангистов. Заметно превосходит 440A и 440B, поэтому пользуется большей популярностью.

G-2 немного лучше AUS-8 но ее сложно достать и ею мало пользуются.

ATS-34 самая лучшая сталь из нержавеющих и лучше многих высокоуглеродных но закаливание стоит в десять раз больше чем для ее близких аналогов GIN-2, ATS-55 или AUS-8.

154-CM более хрупка чем ATS-34 и с большей вероятностью будет крошиться на острие.

VG-10 такая же как и ATS-34 в удержании заточки и такая же нержавеющая.

BG-42 такая же как ATS-34 но содержит Ванадий. Дороже чем ATS-34.

Сталь М2 - инструментальная сталь для режущих инструментов, работающих на больших скоростях - основные применения сверла и фрезы. М2 успешно закаливается до твердости 62HRC без появления хрупкости.

X15TN изготавливается французской фирмой Aubert & Duval. Для производства используется редкий техпроцесс с использованием азота: Очень высокая сопротивляемость коррозии. Стойкость режущей кромки как у 440А. Максимальная эффективная HRC -58

При условии правильной термообработки CPM440V лучше держит заточку чем AUS-10 и менее хрупка, кроме того CPM440 меньше ржавеет. AUS-10 по составу (за исключением наличия ванадия и чуть меньшего содержания молибдена) близка к распространенной стали 440C, да и по эксплуатационным характеристикам вроде тоже.

DAMASTEEL - дамасская сталь полученная методом порошковой металлургии т.е. конструкция (не сплав!), полученная путем термо-механического соединения двух разных сталей.

420 sub-zero quenched Cold Steel на самом деле это 420HC(420 Modified), которая в результате криогенной обработки при закалке становится равной по характеристикам стали 440A - не более (хотя некоторые эксперты говорят о равенстве 440B).

Общая тенденция в ножевой индустрии - переходить от 440A к 420HC с криогенной
обработкой. Причины:
1)меньшая стоимость 420HC
2)420HC лучше поддается механической обработке
3)440A перестала выпускаться в виде брусков удобной формы для изготовления длинномерных ножей

Carbon V - это не марка стали, а зарегистрированное ColdSteel название.
Поэтому в разные периоды под названием Carbon V продавались разные стали - отсюда и разница в результатах лабораторных исследований состава и др. тестов.
В настоящее время под маркой Carbon V продается вполне хорошая высокоуглеродистая сталь 0170-6 (она же 50100-B).

Ножи Roselli помеченные как Carbon изготавливаются из высокоуглеродистой стали W75, производимой ThyssenKrupp эффективная твердость закалки 59-62HRC

С UHC много неясного. Скорее всего это модифицированная высокоуглеродистая сталь с минимумом (или полным отсутствием) добавок, наподобие 1095. Далее с помощью специализированного тех.процесса содержание углерода в стали поднимают. Возможный вариант - переплавляют сталь вместе с материалом-источником углерода в герметично закрытом сосуде (вроде древнеиндийского метода получения сверхтвердой стали). Достигаемая для UHC эффективная твердость закалки 64-66HRC. Единственное, не верится в то, что эта сталь не хрупкая.

AUS-8 превосходит ATS-34 (она же 154CM) по ударной прочности.

Марк Лучин о 3% Углерода:
То, чугун в понимании стандартного процесса металлургической обработки. Когда по медлительности оборудования, лености и не своевременности производят операции с расплавом. Если сверхбыстро остужать сплав с содержанием и в 3,5 углерода, то он совсем не обязательно выпадет графитом (к стати все высокоуглеродистые стали склонны к графитизации при ленивом нагреве).

Так вот в виде графита (ежели шустро шевелиться) не выпадет, а останется в цементитном виде. А если позаботиться о мелком зерне, то и гибкость будет. Наиболее здорово было бы получить рафинированную в кольцевом индукторе среднюю часть болванки с отогнанными к краям (методом многократной перекристаллизации) вредными примесями. В этом случае сверхчистая структура металла даже с 3,5% углерода будет обладать гибкостью и нанозерном. А вот уж чем ты еЎ затачивать будешь и потом обо что тупить... ну думаю найдЎшь :)

Потому проси именно СТАЛЬ с углеродом выше 3% и тупо стой на своЎм

Что есть эта самая эвтектоидная сталь и чем хороша.
Во первых стандартно принято считать, что сталь с содержанием 0,8 углерода это стандартная эвтетика. Например AUS-8 таковой в принципе и является. За что её и ценю к стати на втором месте после CPM. Но это всё немного от лукавого. Дело в том, что цементитная составляющая начинает охрупчивать сталь именно начиная с этой пропорции углерода в стали. Но и это от лукавого. Так как на самом деле речь идёт о стандартной теромемеханической обработке стали в заводских условиях. Если же начинать снижать размеры зерна то понятие эвтетики уходит вверх по углероду постепенно приближаясь к мифическому булатному рубежу в1,7% а затем и запредельным 2,14% с переходом в алмазную сталь (сталь в которой цементитная составляющая замещена в процессе закалки пересыщенного раствора углерода железа при экстремальной обработке аналогичной формообразованию алмаза). И на самом деле известно, что сверхуглеродистые стали давали и не раз микрокристаллы алмаза в своей структуре после закалки. Так, что как уже многократно говорил - ищите мелкозернистую сталь и мастеров которые могут и знают как и чем обеспечить мелкое зерно (ковка не выше 727 по цельсию и закалки от 750-820 в индукторе или расплаве чугуна). С нержой сложнее, но и для неЎ общая анатомия та же. А то что нам рассказывают эксперты спайдерко и иные "спецы" так не всё оно на самом деле правда. Или скажем так конечно, что правда, но для среднего нормального обывателя со стандартным металлургическим образованием. и проблема сверуглеродок в том, что их надо настолько быстро и качественно обрабатывать, что современные крупногабаритные металлургические заводы просто не могут довести сталь с теми же 1,9% углерода до состояния сверхпластичности и нанокристаллической структуры. Это может только Мастер.

Александр - Москва.
У 440С очень большой разбрось по твердости и стойкости РК. Если сравнивать её например со 154 См, то она (440С) может быть как хуже (позвольте применить такой не профессиональный термин) по данной характеристике, так и лучше 154-ой, в то время как 154-я очень стабильна.

по поводу старению сталей да и других материалов:

Вообще то старением называют процессы, связанные с распадом твердых растворов. Но, в более общем смысле, можно рассмотреть процессы изменения свойств стали под влиянием внешних факторов (как правило температуры и напряжений).

Большинство сталей, используемых для ножей, представляют собой некий компот из мартенсита, фаз упрочнителей (карбиды и интеметаллиды) и остаточного аустенита (некоторые из них могут и не присутствовать в данной стали). И под влиянием различных факторов все эти составляющие могут претерпевать заметные изменения..Что влияет на свойста материала.

Если рассматривать превращения в ходе обычной эксплуатации ножа, но наиболее значимыми будут преващения остаточного аустенита.

Во многих сталях (особенно углеродистых и низколегированных) часть аустенита со веменем превращается в мартенсит...Процесс заметно активизируется при колебаниях температуры и особенно при многократных охлаждениях. В результате в стали образуются дополнительные напряжения и изменяются размеры.. Именно поэтому для высокоточного измерительного инструмента применяют сложную Т.О. - чередование многократных охлаждений и низкого отпуска, либо многочасовой низкий отпуск.

В высоколегированных сталях аустенит гораздо стабильнее, но и он способен испытывать превращения под влиянием температуры и напряжений. Например, на РК ножей, изготовленных из высокоуглеродистых корозионностойких сталей (типа 95Х18) и сталей типа Х12МФ, сохраняющих заметное количество остаточного аустенита, под влиянием напряжений, возникающих при заточке и эксплуатации может происходить локальное превращение аустенита в тонком слое (0.1-0.7мм). К тому же при заточке происходит образование новых поверхностейс высокой свободной энергией, что так же способствует фазовым превращениям. В результате лезвие "обрастает" в течение нескольких часов-дней после заточки. Субъективно это может приводить как к увеличению "остроты" так и к ее снижению - зависит от многих причин.

Остальные процессы старения как правило азвиваются при больших температурах, и широко используются при Т.О. (типичный пример - быстрорежущие и мартенситно-стареющие стали).

Истоки элитных сталей (ATS-34 и пр.)

Ясуки хаганэ (группа элитных японских сталей) используется большинством производителей ножей в Японии. Они еще называются YSS (Yasuki Speciality Steel). Кроме этого используются тамохогане (сталь для самурайских мечей), Шведская сталь, сталь Феникс из Британии и пр. - но редко только в особых случаях. Можно сказать, что японские кузнецы по всей Японии исключительно используют Ясуки. Это сталь производиться исключительно Hitachi Metals, Ltd (подразделение Хитачи) - фабрикой Ясуги. Предшественник Hitachi Metals - Unpaku Steel Company основанная на базе производства Ясуги в 1891. Основатели производства обладали секретом технологии Вакоу (японская сталь) с помощью которой производилась сталь для мечей и другого оружия из элитного железного песка из Изумо. Фабрика Ясуги была поглощена Хитачи и стала называться Hitachi Metals, Ltd в 1967.Таким образом производство Ясуги - старейшее производство в составе Хитачи.

Земля Изумо провинции Шимане с производством Ясуги было известно с древних времен как место где изготавляется античная сталь тамахагане. Тамахагане изготовляется из железного песка высочайшей чистоты - "Маса" который добывают в горах или речных размывах. Метод которым добывают железный песок называется "канна нагаши" использует течение реки и тяжесть железа - примитивный метод, тем не менее поззволяющий опытному мастеру намывать много песка.

Кроме того богатые лесные ресурсы гор оборачиваются хорошим источником древесного угля необходимого для производства железа. Тамахогане в Изумо производиться с помощью "метот производства стали Татара" ставшего хорошо известным благодаря фильму "Принцесса Мононоке". Тамахогане из Изумо очень качественное и распространяется по всей Японии как сталь для режущего инструмента в том числе и для самурайских мечей. До периода Эдо 80% стали в Японии было из Изумо. Когда же современные сталелитейные технологии выплавляющие сталь из железной руды в доменных печах пришли Японию, распространенные повсеместно "татара кузницы" очень быстро исчезли. Однако тамахогоне в Изумо просуществовало до начала 1900 годов. Hitachi Metals поглотившая Unpaku Steel Company унаследовала процесс вакоу использующий песок "Маса" используя и по сей день преимущества географического положения.

Однако производство Ясуго не стояло на месте и разработало аналогичные татара безкислородные методы производства стали и безиспользования древесного угля. Кроме того они разработали множество современных методов сталеплавления. Например ЭлектроШлаковаяПереплавка (Electro-Slag Remelting) была изобретена в СССР (сейчас это Украина) во время Холодной Войны. С его помощью можно производить сталь мелкой структуры (fine solidification structure of steel) без использования вакумного процесса. Ясуго вторыми после СССР и первыми в Западном мире стали использовать этот метод. Это было секретом и только второй случай в Японии применения этой технологии был официально объявлен. Русские конечно знали об этом факте.

Из за своего высокого качества стали ясуки сейчас считаетюся лучшеми для ножей, автомобилестроения, бритвенных лезвий, лопаток реактивных турбин и металлообрабатывающих инструментов. ATS-34, SLD (D2) считается самыми лучшими для элитных ножей по всему миру. Джиманджи - одна из самых известных сталей для бритвенных лезвий.

Высокоуглеродные стали Тамахогане, Широгами, Аогами считаются лучшими для профессиональных резчиков по дереву и поваров в Японии. Они известны тем что их микроструктура улучшается со временем в процессе использования. Конечно свойчтва ножей зависят от мастера кузнеца котрый использует эту сталь для производства режущего инструмента.

Широгами (Shiro Kami- белая бумага) -белая сталь или Ясуки №1
C 1-1.2% Si 0.1-0.2% Mn 0.2-0.3%
Аогами (Ao Kami - голубая бумага) - голубая сталь или Ясуки №2
C 1-1.2% Si 0.1-0.2% Mn 0.2-0.3% Cr 0.2-0.5% W 1-1.5%

Обычно закаляются до 62-64HRC

Голубая сталь легче в термообработке - японские мастера смотрят на цвет раскаленной стали, определяя таким образом температуру, и с голубой сложнее ошибиться, поскольку границы какого то там температурного диапазона шире.

Татара метод - 15 тонн железного песка и 15 тонн древесного угля загружают в глиняную печь и жгут три дня и три ночи. Потом ломают печь и изымают Керу - огромный слиток стали весом около 2.5 тонн, получающейся на дне перчи. Остывшую Керу разбивают на куски, которые потом разделяют на три сорта Тамахагане, Букера и Керазуки и пр. Букера и Керазуми идут на изготовление ножей, инструментов и сельскохозяйственного инвентаря и требуют термообработки и повторной закалки.

Татара метод использовался повсеместно с эры Эдо вплоть до начала эры Меиджи и более 80% стали в Японии производилось в округе Чугоку. Во время эры Меиджи в Японию из-за рубежа пришли современные более эффективные методы производства стали и Татара метод из-за своей неэффективности резко потерял популярность и совсем исчез в эру Таишо.

Производиться сталь стала компанией основанной в Ясуги Сити с использованием современных технологий. Сейчас она известна в Японии и за рубежом как сталь Ясуки.

Однако поскольку только тамахагане может использоваться для изготовления настоящих самурайских мечей и эта сталь может быть произведена только с помощью Татар метода - Татар производство и печи былы восстановлено в 1977 году в городе Ёкота Японской Ассоциацией Сохранения Искусства и Мечей. С тех времен всего по несколько раз в год выплавляется сталь по этой методике.

Сейчас все высококачественные стали получают с помощью различных способов рафинирования. Наиболее часто используют электрошлаковый переплав и различные способы вакуумного переплава (ВД, ВИ...). Для лучшей дегазации применяют продувку аргоном. Для лучшего удаления серы и фосфора (а в некоторых случаях и углерода) используют кислородное рафинирование. Наиболее высококачественные стали выплавляют, используя несколко методов одновременно или последовательно.
При одинаковом формальном составе стали, сталь разных плавок может заметно отличатся по свойствам. Причиной тому могут стать различные примеси, иногда ОЧЕНЬ заметно влияющие на состояние границ зерен (например 0.002% Sb или Bi могут сделать из стали стекло) и применяемые модификаторы.

Первичный размер зерна и распределение карбидов зависят от состава стали, ее модифицирования и условий охлаждения слитка (температура заливки, масса и размеры слитка, характер формы).

Именно поэтому высококачественные стали отливают в слитки малой массы, что обеспечивает лучшую первичную структуру стали. Хотя, при выборе оптимального размера слитка надо иметь в виду её дальнейшую судьбу - то есть, на какой профиль сталь будет прокатана.
То есть на свойства стали в прокате влияют как первоначальная структура стали, так и степень деформации (и разумеется, ее зарактер) и разумеется, ТО.

И, если размер зерна стали как правило формируется в результате окончательной ТО (при последней закалке), хотя, в той или иной степени наследуется первоначальная структура, то с распределением карбидов все намного сложнее. Его можно улучшить термообработкой (в зависимости от типа карбида можно применять разные методы) и используя пластическую деформацию. Самый радикальный способ - использование методов порошковой металлургии.

Важность закалки стали

Химический состав стали определяет ее потенциал быть исключительным лезвием - насколько этот потенциал реализуется зависит исключительно от термической обработки. Без закалки это не сталь а сплав. Прекрасная сталь, но незакаленная - мягкая как обычное железо; или перекаленная сталь подобна стеклу чрезвычайно острая но хрупкая и колется при малейших нагрузках. Например сталь AUS-8 заточку не держит при закалке до твердости менее 56 Роквела, очень хороша при 57 Роквела и совсем хрупка при 60 Роквела. Иногда можно прочитать про тот или иной оригинальный способ закалки. Это скорее всего реликт кустарного производства - "секрет" передаваемый из поколения в поколение. Например англичанин Томми (не знаю реальное это имя или просто его так назвали поскольку он англичанин) более полутораста лет назад научил финнов закалять сталь в масле и они следуют этой технологии до сих пор. Дело в том что для каждой стали существует свой известный способ охлаждения: воздушный, масляный, криогенный... Это определяется природой сплава и определением лучшего способа охлаждения занимаются металлургические лаборатории, вооруженные электронными микроскопами, спектрометрами, термометрами и т.п..

Так же существуют таблицы отпуска сталей где указано до какой температуры ее разогревать после закалки, что бы получить нужную твердость по Роквелу. Поэтому мало вероятно, что используя масляную закалку для стали, которая нуждается в воздушной, можно было бы получить хороший результат. Разве что варить свою сталь - чем практически никто не занимается. Я знаю только про Роселли в Финляндии и мастеров Гильдии Оружейников в России. Они правда экспериментируют с булатом - супер высокоуглеродными сплавами, для которых, как я понял, закалка не нужна и даже вредна. Каинуун делает ножи из "серебряной стали" и закаливают в масле как научил их Томми. С другой стороны, закалка с охлаждением с помощью криогеники до -130C повышает износостойкость 440 стали приблизительно на 120%, эффективная твердость увеличивается на 10-15%.

Закалка даже на плохой стали может привести к тому, что такой клинок окажется лучше, чем клинок из лучшей стали, но с худшей по качеству закалкой. Плохая термическая обработка может привести к тому, что лезвие из нержавеющей стали потеряет свою устойчивость к коррозии, либо упругая сталь станет хрупкой, и так далее. К сожалению, из всех трех самых главных свойства лезвия (профиль клинка, тип стали и тип закалки), закалку нельзя оценить визуально. Как результат этого, на нее зачастую не обращают внимания, уделяя ее лишь форме клинка и типу стали.

Вывод 1: Таким образом сталь сама по себе не делает нож хорошим, к сожалению определить как хорошо лезвие обработано невозможно без интенсивного использования. Поэтому лучше довериться авторитетной фирме или мастеру, чем химическому составу стали.

Вывод 2: Хороший нож из полосы хорошей стали путем просто обточки получить без закалки невозможно. Более того при сильном нагреве сопутствующем обточке на станке сталь может потерять свои свойства, если она не специальная инструментальная - высокоскоростная, точнее это зависит от режима отпуска для этой стали.

Русские ножевые стали

Так как для изготовления клинков наиболее часто применяют инструментальные (в том числе и корозионностойкие) и близкие к ним подшипниковые и рессорно-пружинные стали, попробую остановиться на них поподробнее. При этом буду придерживаться классификации, принятой для инструментальных сталей (для сталей другого целевого назначения буду делать комментарии)

Углеродистые стали.

Стали типа наших У7-У16 и буржуйской 1095. Сюда же можно отнести легированные марганцем стали (в том числе и любимую многими 65Г). Весьма популярны, но, на мой взгляд, недостатков намного больше, чем плюсов. В первую очередь, хотя это многих удивит, низкая прочность и ударная вязкость (без ковки и/или термоциклической обработки). Во вторых, как это опять же не удивительно, сложность ТО - в первую очередь узкий интервал закалочных температур (особенно, для доэвтектоидных и эвтектоидных сталей) - стоит чуть перегреть - пиши пропало. В третьих - низкая износостойкость, несмотря на высокие достижимые значения получаемой твердости. Низкая закаливаемость и прокаливаемость, высокая деформация при закалке. Низкая стабильность свойств. Ржавеют опять же.. Все вышесказанное не относится к ножам Мастеров - в их исполнении углеродка может быть очень неплоха.

А теперь попробую поподробнее.

Инструментальные углеродистые стали в соответствии с ГОСТ 1435–90 маркируют буквой «У» и числом, указывающим среднее содержание углерода в десятых долях процента. Для изготовления инструмента применяют качественные стали марок У7–У13 и высококачественные стали марок У7А–У13А, а так же стали, легированные марганцем.

По структуре стали подразделяются на эвтектоидные (У7-У8) и заэвтектоидные (У9-У16) По механическим свойствам и назначению углеродистые стали подразделяются на:

стали повышенной вязкости (У7–У9) для изготовления инструмента с высокой режущей способностью, подвергающегося ударным нагрузкам (зубила, кернеры и т.д.). К этой же группе можно отнести рессорно-пружинные стали типа 60-75Г.

стали высокой твердости (У10–У13) для изготовления режущего инструмента, не подвергающегося ударным нагрузкам (напильники, шаберы и т. д.). Сталь У16 применяется в основном для изготовления износостойких втулок.

Твердость окончательно термически обработанного инструмента из углеродистых сталей обычно лежит в интервале 57–63 HRCЭ, а прочность при изгибе составляет 1800–2700 МПа. Стали требуют аккуратного шлифования из за возможности образования прижогов и мягких пятен. После шлифования желателен низкий отпуск.

Свойства углеродистых сталей могут быть заметно улучшены термоциклической и термомеханической обработкой. В некоторых случаях будет уместной зонная закалка. Перспективных сталей в этой группе не предвидится.

Легированные стали

В данном пункте будут рассмотрены только низко- и среднелегированные стали. Эти стали подразделяются на стали неглубокой и глубокой прокаливаемости. По назначению – инструментальные и подшипниковые (сталь ШХ4 близка к стали Х, ШХ15 – к стали Х1).

Из наиболее популярных хочется отметить

  • Х (ШХ4)
  • Х1 (ШХ15)
  • 9ХФ (90ХФМ)
  • 11ХФ (11Х)
  • 13Х
  • ХВГ (ХСВГ, ХСВГФ)
  • В2Ф и ХВ4Ф (ХВ5)

Из перспективных сталей – возможно, стали типа ХВ4Ф, при замене в структуре стали карбида вольфрама на карбид ванадия или ниобия.

Полутеплостойкие стали.

Как правило, высокоуглеродистые стали, легированные хромом, молибденом, ванадием, иногда вольфрамом. В этой группе рассмотрим только стали, обычно обрабатываемые на первичную твердость. Некоторые стали этого типа производятся по порошковой технологии. По назначению – как правило штамповые стали. На мой взгляд, это одна из наиболее интересных групп для изготовления клинков. Традиционно их делят по износостойкости на стали повышенной и высокой износостойкости. Кроме того, они традиционно делятся на 2 группы - 6%Cr и 12%Cr

6% Cr - типичные представители 85Х6НФТ и Х6ВФ (близки к буржуйской А2)- хорошее сочетание прочности, износостойкости и ударной вязкости. Еще лучшим комплексом свойств обладают высокованадиевые стали типа Х6Ф4М (близка к буржуйской А7)

12% Cr - ну, самый типичный представитель - Х12МФ (D2). Износостойкость примерно в 2 раза выше, чем у Х6ВФ, ударная вязкость в 2 раза меньше (можно заметно повысить ТЦО). Х12Ф1 - примерно посередине между Х12МФ и Х6ВФ.

Есть высокоуглеродистые стали типа Х12 и Х12ВМ (Х12В, Х12ВМФ) - износостойкость несколько выше чем у Х12МФ, прочность и вязкость - заметно ниже.

Есть высокованадиевые стали типа Х12Ф4М - износостойкость выше чем у высокоуглеродистых сталей при прочности и вязкости, сопоставимых с Х12МФ.

Отдельную группу составляют стали типа Х3Ф8, Х3Ф12 или Х1М2Ф12

Из наиболее перспективных - Х6Ф4М и Х12Ф4М (Х12Ф3М, Х12МФ4). Эти стали, особенно Х6Ф4М, могут быть интересны и для любителей булата. Вполне возможно, будут интересны азотсодержащие стали этого типа.

Быстрорежущие стали.

Как правило, стали, легированные хромом, вольфрамом, молибденом и ванадием. Наиболее распространенные марки:

  • Р18
  • Р12
  • Р9
  • Р6М5 (10Р6М5, Р6АМ5)
  • Р6М5Ф3 (Р6М5Ф4)
  • Р2М8 (11Р2М8)
  • Р8М3
  • Р12Ф3
  • Р14Ф4
  • Р9Ф5
  • Р6М4К5
  • 11Р2М8К5 (11Р2М8К8)
  • 11Р3АМ3Ф2

И еще около 100 марок.

Исторически наиболее популярна Р6М5 (М2). При правильной ТО сталь с неплохим комплексом свойств. Но, все же, уступает высокованадиевым сталям предыдущей группы. В последнее время на эксклюзивных моделях появляются и другие выстрорезы, как правило высокованадиевые порошковые. Интегральное мнение - стали весьма неплохи, но тот же (и даже более высокий) уровень свойств можно получить на сталях попроще и с более простой ТО. Кстати, по ТО - для использования для клинков ножей большинство быстрорезов можно обрабатывать на первичную твердость - в результате - как правило, несколько ниже твердость, больше остаточного аустенита, и несколько (иногда в 2 раза) больше ударная вязкость. В случае обработки на вторичную твердость рекомендуют несколько (на 10-40С) понизить температуру закалки. Возможно, будет иметь смысл оставить некоторое количество аустенита (например, снизить температуру 3 го отпуска до 400-450 градусов.) Снизив температуру первого отпуска до 400-450 градусов и заметно увеличив его длительность можно получить лучшее распределение карбидов, и, следовательно, прочность и вязкость. Некоторые резервы есть в комплексном модифицировании (B + Zr + Nb + РЗМ) и применении методов порошковой металлугии.

Из новых интересных марок – молибденовые стили типа 11М5Ф, 11М7ФЮС, безвольфрамовые стали типа 65Х6М3Ф3БС (ЭП973), 65Х6М2Ф3Б (ЭП972), 9Х6Ф2АРСТГ (ЭК15), 95Х6М3Ф3СТ,ш (ЭК80), 9Х4М3Ф2АГСТ (ЭК42).

Отдельную группу составляют стали с интерметаллидным или карбидным и интерметаллидным упрочнением – о них дальше.
5. Стали с высоким сопротивлением пластической деформации.

Как правило это стали обрабатываемые на вторичную твердость (подобно быстрорезам). Основное применение - инструмент для холодной деформации, теплостойкие подшипники, детали топливной аппаратуры. Типичные представители -

  • 6Х6В3МФС, 6Х4М2ФС, 8Х4В2МФС2, 11Х4В2МФ3С2.

Некоторые из них (особенно 6Х6В3МФС и 6Х4М2ФС) могут быть весьма интересны для изготовления ножей, ориентированных на рубку.

К этому же классу могут быть отнесены некоторые стали, которые могут применятся как быстрорежущие, но в основном применяются как стали с высоким сопротивлением пластической деформации, например:

17Х5В3МФ5С2 МП, Р0М2СФ10 МП (CPM 10V), 17М6Ф5Б (МП).