Инфракрасные (ИК) газовые горелки

Их называют беспламенными или, что более правильно, микрофакельными. Они обеспечивают высококачественное сжигание газа вследствие ин-жекции всего воздуха, необходимого для горения. Газ сгорает в огневых отверстиях малого диаметра 0,8... 1,5 мм. При этом факел состоит лишь из внутреннего конуса; он прозрачен и практически не виден. Теплота нагреваемым предметам передается излучением, так как огневые каналы находятся внутри керамических плиток, температура которых может достигать 850... 1000 °С. Такие горелки широко применяют в газовых грилях, а также в плитах.


Инжекционные горелки инфракрасного излучения: а — принципиальная схема устройства; б — керамические плитки-излучатели; в — ИК-горелки типа «звездочка»; г — открытая ИК-горелка из 8 плиток;
1 — рефлектор; 2 — керамические плитки-излучатели; 3 — насадка; 4 — огневые каналы; 5 — инжектор-смеситель; 6 — отверстия для первичного воздуха; 7 — сопло; 8 — сетка-стабилизатор горения

 

Система безопасности газовых горелок.

Образующиеся при горении газовоздушные смеси представляют собой серьезную опас­ность для обслуживающего персонала, так как они могут привес­ти к пожару или взрыву в производственных помещениях. По этой причине промышленные газовые горелки подключают к системе газоснабжения посредством специальных систем безопасности.

Для этой цели иногда применяет систему электромагнитного действия, в которой для контроля за наличием пламени используют термопару. Нагретый от факела горелки спай термопары служит источником слабого электрического тока, который, проходя по катушке электромагнита, обеспечивает проход газа к горелке. В случае загасания горелки спай термопары остывает, электромагнит обесточивается и закрывает проход газа к горелке.

Более надежна и эффективна автоматика безопасности (АБ) пневмоимпульсного действия. Для контроля за факелом в этой системе используют металлический стержень, удлиняющийся при нагреве и укорачивающийся при отключении горелки и последующем охлаждении. Подача газа отключается специальным блоком, состоящим из двух частей (главного клапана-отсекателя и реле-инвертора), объем каждой из которых разделен гибкой герметичной мембраной. Мембрана приходит в движение в том случае, если создается перепад давлений на ее поверхностях. В этом случае она открывает или закрывает соответствующие отверстия (сопла).

При допусковым положении (а) газ, проте­кая по специальным каналам, заполняет пространства В и Б, а также канал под главным клапаном-отсекателем (пространства, заполненные газом, заштрихованы.) При этом давление над мембраной в полости Б и под клапаном одинаковы и на клапан действует лишь сила тяжести. В результате клапан-отсекатель остается закрытым, а доступ газа к газовой горелке исключается.
При пусковом положении (б) нажимают на кнопку «Пуск» и газ в дополнение к предыдущему случаю заполняет полость А. При этом газ идет к запальнику, который воспламеняют. Одновременно газ по импульсной трубке поступает в направлении к полости Д и к датчику пламени. Последний в первый момент открыт, и газ вытекает через специальное отверстие в атмосферу. Полость Г имеет специальный канал (линия эвакуации), через который она соединена напрямую с атмосферой. В этом случае давление в полостях Д и Г равно атмосферному и мембрана реле-инвертора не испытывает силовых воздействий. Клапан этого реле находится под действием пружины и занимает верхнее положение. При этом давление в полостях А и Б одинаково, мембрана клапана не испытывает пневматических усилий, а главный клапан-отсекатель закрыт.
Под действием термического расширения стали, из которой сделан датчик пламени, его пластина удлиняется, и датчик плот­но закрывает канал защиты. В результате давление газа в канале защиты и в полости Д повышается (в). Поскольку под мембраной реле-инвертора в полости давление атмосферное, то на мембрану действует сила, перемещающая клапан реле-инвер­тора вниз.
В результате верхнее сопло полости В открывается, а нижнее закрывается. Через открытое верхнее отверстие остатки газа из по­лости Б через пространства В и Г выходят в атмосферу, и в поло­сти Б давление понижается до атмосферного.
Поскольку в полости А давление повышенное, равное давле­нию газа в сети, то на мембрану главного клапана действует сила, направленная вверх, которая поднимает главный клапан и открывает основной доступ газа к горелке. В этот момент можно отпустить кнопку «Стоп» и открыть кран газовой горелки.
В случае загасания горелки и запальника пластина датчика пламени укорачивается и канал защиты открывается. В полости Д реле-инвертора давление падает до атмосферного.
Твердо- и жидко топливные нагреватели
К твердому топливу относятся дрова, торф, бурые угли, каменные угли и антрацит. Тепловая энергия топлива, как и газа, характеризуется его никой рабочей теплотой сгорания.
В качестве жидкого топлива используют продукты нефтеперегонки: легкие (бензин, керосин); средние (дизельные масла, газойль и соляровое масло); тяжелые (мазут).
На предприятиях общественного питания жидкое топливо при­меняют редко — главным образом на передвижных и полевых предприятиях общественного питания, лишенных централизованных энергетических источников. Основной вид топлива здесь — это, как правило, дизельные масла различных сортов, сжигаемые в дизельных форсунках или горелках. Тепловые аппараты обычно имеют такое устройство, которое позволяет сжигать в них различные виды твердого топлива.

Примеры колосниковых решеток: а — с прямоугольными отверстиями; б — с круглыми отверстиями; в — с ромбовидными отверстиями

Топочные камеры.

Твердое, жидкое и газообразное топливо сжигаются в специальных теплообменных устройствах — топочных камерах, которые I подразделяют в зависимости от формы на цилиндрические, коробчатые и щелевые. Стенки топочных камер, как правило, частично или полностью экранированы водой. Увеличение степени экранирования водой стенок топочной камеры приводит к возрастанию ее КПД и уменьшению габаритов.


Последовательность срабатывания блока АБ на отключение:
а — допусковое положение; б — положение при нажатии на кнопку «Пуск»; в — положение при срабатывании датчика пламени (на схеме заштрихованы полости, заполненные газом)

 

Электроплиты.

 

Рабочая (жарочная) поверхность электроплит обычно состоит из одной, двух, четырех или шести электрических конфорок, чаще всего выполненных в виде электронагревателей закрытого типа. Конфорки прямоугольной формы имеют размеры 0,417x0,295; 0,405x0,370; 0,530x0,325 м, а круглые — диаметр 0,236 и 0,300 м. Каждая конфорка может быть установлена или закреплена на общей конструкции самостоятельно; иногда их объединяют в блоки. Наличие унифицированного блока облегчает операции монтажа, об­служивания, ремонта и регулировки конфорок, так как в откинутом (поднятом) положении блока открывается свободный доступ к колодкам конфорок, закрепленным на рамке блока, пакетным переключателям, сигнальным устройствам и токоподводящим проводам. При любом способе установки конфорок конструкция должна включать элементы, которые позволяют точно фиксировать уровень жарочной поверхности каждой конфорки и всей плиты в целом.
Корпус нестационарных плит представляет собой сварную кон­струкцию, облицованную стальными эмалированными листами. Корпус секционно-модулированных плит образован боковыми облицовками, соединенными между собой и прикрепленными к двум сварным рамам.
Все электрические плиты имеют систему сбора пролитой жидкости, включающую выдвижной поддон. В плитах, где предусмотрена тепловая обработка изделий непосредственно на жарочной поверхности, система сбора жира и крошек представляет собой канавку, окаймляющую конфорку по периметру и имеющую носик для слива остатков при санитарной обработке.
Степень совершенства плиты во многом определяется эффективностью нагревательного элемента, формирующего рабочую поверхность. По этой причине стремятся заменить металлоемкие электроконфорки закрытого типа на ТЭНовые, ситаловые или специальные облегченной конструкции.
Жарачный шкаф, устанавливаемый в электроплитах, — это автономно работающая конструкция, которая идентична конструкции шкафов, используемых в отдельных специализированных аппаратах. Жарочный шкаф можно свободно вынимать из общего корпуса плиты для ремонта.
В секционных и несекционных плитах бортовая поверхность входит в конструкцию в качестве обязательного элемента, а в секционно-модулированных — бортовая поверхность съемная и устанавливают ее при необходимости.


Принципиальная схема четырехконфорочной плиты с жарочным шкафом:
1 — каркас; 2 — бортовая поверхность; 3 — конфорки; 4, 9 — верхняя и нижняя группы ТЭНов; 5 — выдвижной поддон; 6—блок управления; 7 — противень; 8 — поддон

Верхний и нижний группы ТЭНов жарочного шкафа с помощью пакетных переключателей могут быть подключены к сети так, что мощности различных ступеней будут соотноситься между собой как 4:2:1. В жарочном шкафу для контроля за температурой газовоздушной среды рабочей камеры устанавливают тер­мочувствительный элемент, подающий управляющий сигнал на терморегулятор, который отключает обе группы ТЭНов при достижении заданной температуры внутри рабочей камеры. Существующая система регулирования мощности электроплит не обеспечивает плавности регулирования и точного поддержания заданных режимов. Это достигается в наиболее совершенных устройствах путем использования системы тиристорных преобразователей и микропроцессоров.

Газовые плиты.

Используемые на предприятиях общественного питания газовые плиты, как и электрические, состоят из двух автономных тепловых элементов: жарочной поверхности и жарочных шкафов и имеют более сложную конструкцию, обусловленную наличием сложного теплогенерирующего устройства, а также устройств, необходимых для удаления продуктов сгорания.
В эксплуатации находятся в основном секционные и секционно-модулированные плиты. Конструкция секционных плит предусматривает обслуживание с двух сторон, а секционно-модулированных — с одной фронтальной стороны. В одну секцию обычно входят две чугунные плиты, образующие единый жарочный настил (каждая из плит обогревается индивидуально собственной горелкой), и один или два жарочных шкафа, вместо которых могут быть установлены инвентарные шкафы.
Несущая конструкция выполнена либо в виде облегченного сварного каркаса, облицованного стальными эмалированными листами, либо бескаркасной.
Для обогрева жарочной поверхности используют чаще всего инжекционные газовые горелки с трубчатыми насадками. Для увеличения равномерности обогрева нижнюю поверхность чугунного настила делают ребристой, используют многотрубчатые горелки с установленными между трубками вспомогательными керамическими насадками (плитками), которые нагреваются до 600...800°С и переизлучают инфракрасную энергию.
Плиты с инжекционными инфракрасными беспламенными горелками не только обеспечивают равномерный обогрев, но и позволяют отказаться от установки жарочной поверхности, что обеспечивает существенное повышение эффективности тепло­передачи. В плитах с такими горелками не нужно устанавливать специальных газоотводов, так как обеспечивается практически полное сгорание газа. Однако распространения они не получили из-за хрупкости керамических насадок, разрушающихся при не­больших механических воздействиях и попадании влаги на их поверхность.

Газовые плиты: а — принципиальная схема двухконфорочной плиты: 1 — каркас; 2 — жарочная поверхность; 3 — горелка; 4 — керамические излучатели; 5 — приборный отсек блока горелок; 6 — рабочая камера жарочного шкафа; 7— теплоизолированная дверца; 8 — под жарочного шкафа; 9 — го­релка жарочного шкафа; 10 — бортовая поверхность;
б — схема секционной плиты с жарочным шкафом и водонагревателем: 1 — каркас; 2 — асбоцементные панели; 3 — поручень; 4 — борт; 5 — жарочный настил; 6 — водонагреватель; 7 — газоход; 8 — заслонка газохода; 9 — газогорелочное устройство; 10— жарочный шкаф; 11 — направляющий угольник; 12 — под; 13 — дверца; 14 — рукоятка дверцы; 75 — металлический лист; 16 — заслонка;
в — передвижная газо­вая плита: 1 — стационарная ИК-горелка; 2 — тележка; 3 — конфорка

Жарочная поверхность газовых плит, как и электрических, обычно ограждена бортовой поверхностью, а иногда и поручнями, устанавливаемыми на кронштейнах. Под жарочную поверхность и газогорелочные устройства подставляют выдвижной поддон для сбора пролитой жидкости. Перед газовыми горелками монтируют приборный отсек, в котором размещают устройства для регулирования подачи первичного воздуха, газовые краны, трубопроводы и приборы автоматики (блок-краны, блоки автоматики безопасности и системы пьезоэлектрического зажигания горе­лок). Если в конструкции плит предусмотрено использование пе­реносного запальника, то должны быть выполнены соответствующие отверстия для внесения запальника и контроля за состоянием пламени и, кроме того, отверстия для подачи вторичного воздуха к горелкам снизу. Такие отверстия в жарочных шкафах делают в прорезях настила или боковых стенках топочной камеры.
Жарочные шкафы могут быть выполнены в виде стационарных коробов из листовой стали, у которых подом служит объемная с оребренной нижней поверхностью чугунная плита, обогреваемая снизу инжекционными горелками с многотрубной насадкой. Продукты сгорания в таких конструкциях попадают в пространство рабочей камеры и уходят в газоход через отверстие в верхней части шкафа. Если жарочный шкаф выполнен в виде двустенного короба, то продукты сгорания проходят между стенками и оттуда попадают в общий газоход. В конструкции шкафа должны быть предусмотрены также отверстия для внесения запальника и наблюдения за состоянием пламени и отверстие для отвода паров из рабочей камеры, которое обычно располагается в верхней ее части. Для регулирования работы плит устанавливают систему автоматики безопасности (АБ).
Конструкция газоходов плиты должна обеспечить независимость работы каждого газогорелочного устройства. В общую часть газохода плиты, которая соединяется с внешним дымоходом и каждой топочной камерой, устанавливают проточный трубчатый водонагре­ватель (змеевик) для утилизации теплоты продуктов сгорания.