Первый закон Ньютона. Масса. Сила 3 страница

При вращении абсолютно твердого те­ла вокруг неподвижной оси z каждая от­дельная точка тела движется по окружно­сти постоянного радиуса ri с некоторой

скоростью vi. скорость vi; и импульс mivi

перпендикулярны этому радиусу, т. е. ра­диус является плечом вектора mivi. Поэто­му можем записать, что момент импульса отдельной частицы

Liz = тiviri (19.1)

и направлен по оси в сторону, определяе­мую правилом правого винта.

Момент импульса твердого телаотно­сительно оси есть сумма моментов импуль­са отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость.

 

 

Продифференцируем уравнение (19.2) по времени:

т. е.

dLz/dt= Mz

Это выражение — еще одна форма урав­нения (закона) динамики вращательного движения твердого телаотносительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место век­торное равенство

dL/dt= М. (19.3)

В замкнутой системе момент внешних сил М=0 и dL/dt=0, откуда

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса:мо­мент импульса замкнутой системы сохра­няется, т. е. не изменяется с течением времени.

Закон сохранения момента импуль­са — фундаментальный закон природы, Он связан со свойством симметрии про­странства — его изотропностью, т. е. с ин-

 

вариантностью физических законов отно­сительно выбора направления осей коор­динат системы отсчета (относительно поворота замкнутой системы в простран­стве на любой угол).

Продемонстрировать закон сохране­ния момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидя­щий на скамье, которая без трения враща­ется вокруг вертикальной оси, и держа­щий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоро­стью w1. Если человек прижмет гантели к себе, то момент инерции системы умень­шится. Поскольку момент внешних сил равен нулю, момент импульса системы со­храняется и угловая скорость вращения w2 возрастает. Аналогично, гимнаст во время прыжка через голову поджимает к тулови­щу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.

Сопоставим основные величины и уравнения, определяющие вращение те­ла вокруг неподвижной оси и его поступа­тельное движение (табл.2).

 

Свободные оси. Гироскоп

Для того чтобы сохранить положение оси вращения твердого тела с течением време­ни неизменным, используют подшипники, в которых она удерживается. Однако существуют такие оси вращения тел, кото­рые не изменяют своей ориентации в про­странстве без действия на нее внешних сил. Эти оси называются свободными ося­ми(или осями свободного вращения).Можно доказать, что в любом теле су­ществуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называются главными осями инерциитела). Например, главные оси инерции однородного прямоугольного параллеле­пипеда проходят через центры противопо­ложных граней (рис. 30). Для однородно­го цилиндра одной из главных осей инер­ции является его геометрическая ось, а в качестве остальных осей могут быть две любые взаимно перпендикулярные оси, проведенные через центр масс в плоско­сти, перпендикулярной геометрической оси цилиндра. Главными осями инерции шара

являются любые три взаимно перпендику­лярные оси, проходящие через центр масс.

Для устойчивости вращения большое значение имеет, какая именно из свобод­ных осей служит осью вращения.

Можно показать, что вращение во­круг главных осей с наибольшим и наи­меньшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом — неустойчивым. Так, если подбросить тело, имеющее форму параллелепипеда, приведя его одновре­менно во вращение, то оно, падая, будет устойчиво вращаться вокруг осей 1 и 2 (рис. 30).

Если, например, палочку подвесить за один конец нити, а другой конец, закреп­ленный к шпинделю центробежной маши­ны, привести в быстрое вращение, то па­лочка будет вращаться в горизонтальной плоскости около вертикальной оси, пер­пендикулярной оси палочки и проходящей через ее середину (рис.31). Это и есть свободная ось вращения (момент инерции при этом положении палочки максималь­ный). Если теперь палочку, вращающуюся вокруг свободной оси, освободить от внеш­них связей (аккуратно снять верхний ко­нец нити с крючка шпинделя), то положе­ние оси вращения в пространстве в тече­ние некоторого времени сохраняется. Свойство свободных осей сохранять свое положение в пространстве широко при­меняется в технике. Наиболее интересны в этом плане гироскопы— массивные од­нородные тела, вращающиеся с большой угловой скоростью около своей оси сим­метрии, являющейся свободной осью.

 

Рассмотрим одну из разновидностей гироскопов — гироскоп на кардановом подвесе (рис.32). Дискообразное тело — гироскоп — закреплено на оси АА, кото­рая может вращаться вокруг перпендику­лярной ей горизонтальной оси ВВ, кото­рая, в свою очередь, может поворачивать­ся вокруг вертикальной оси DD. Все три оси пересекаются в одной точке С, являю­щейся центром масс гироскопа и остаю­щейся неподвижной, а ось гироскопа мо­жет принять любое направление в про­странстве. Силами трения в подшипниках всех трех осей и моментом импульса колец пренебрегаем.

Так как трение в подшипниках мало, то, пока гироскоп неподвижен, его оси можно придать любое направление. Если начать гироскоп быстро вращать (напри­мер, с помощью намотанной на ось вере­вочки) и поворачивать его подставку, то ось гироскопа сохраняет свое положение в пространстве неизменной. Это можно объяснить с помощью основного закона динамики вращательного движения. Для свободного вращающегося гироскопа сила тяжести не может изменить ориентацию его оси вращения, так как эта сила при­ложена к центру масс (центр вращения С совпадает с центром масс), а момент силы тяжести относительно закрепленного центра масс равен нулю. Моментом сил трения мы также пренебрегаем. Поэтому если момент внешних сил относительно его закрепленного центра масс равен нулю, то, как следует из уравнения (19.3), L =

= const, т. е. момент импульса гироскопа сохраняет свою величину и направление в пространстве. Следовательно, вместе с ним сохраняет свое положение в про­странстве и ось гироскопа.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно (19.3), отличие от нуля момента внешних сил. Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явле­ние, получившее название гироскопичес­кого эффекта.Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось ги­роскопа (рис. 33) поворачивается вокруг прямой О3О3, а не вокруг прямой О2О2, как это казалось бы естественным на первый взгляд (O1O1и О2О2лежат в плоскости чертежа, а О3О3 и силы F перпендикуляр­ны ей).

Гироскопический эффект объясняется следующим образом. Момент М пары сил F направлен вдоль прямой О2О2. За время dt момент импульса L гироскопа получит приращение dL = Mdt (направление dLсовпадает с направлением М) и станет рав­ным L'=L+dL. Направление вектора L' совпадает с новым направлением оси вра­щения гироскопа. Таким образом, ось вра­щения гироскопа повернется вокруг пря­мой О3О3. Если время действия силы мало, то, хотя момент сил М и велик, изменение момента импульса dL гироскопа будет также весьма малым. Поэтому кратковременное действие сил практически не при­водит к изменению ориентации оси враще­ния гироскопа в пространстве. Для ее изменения следует прикладывать силы в течение длительного времени.

Если ось гироскопа закреплена под­шипниками, то вследствие гироскопиче­ского эффекта возникают так называемые гироскопические силы,действующие на опоры, в которых вращается ось гироско­па. Их действие необходимо учитывать при конструировании устройств, содержа­щих быстровращающиеся массивные со­ставные части. Гироскопические силы имеют смысл только во вращающейся си­стеме отсчета и являются частным случаем кориолисовой силы инерции (см. §27).

 

 

Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов — поддер­жание заданного направления движения транспортных средств, например судна (авторулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси ги­роскопа в пространстве сохраняется. Сле­довательно, ось гироскопа вместе с рама­ми карданова подвеса поворачивается от­носительно движущегося устройства. По­ворот рам карданова подвеса с помощью определенных приспособлений включает рули управления, которые возвращают движение к заданному курсу.

Впервые гироскоп применен француз­ским физиком Ж. Фуко (1819—1868) для доказательства вращения Земли.

 

 

Деформации твердого тела

Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердо­го тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформация называется упругой,если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации,которые сохраня-

 

 

ются в теле после прекращения действия внешних сил, называются пластическими(или остаточными).Деформации реально­го тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать уп­ругие деформации, что мы и будем де­лать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходя­щим деформациям растяжения или сжа­тия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы f1 и F2 (F1=F2=F), в результате чего длина стер­жня меняется на величину Dl. Естествен­но, что при растяжении Dl положительно, а при сжатии — отрицательно.

Сила, действующая на единицу пло­щади поперечного сечения, называется на­пряжением:

s=F/S. (21.1)

Если сила направлена по нормали к по­верхности, напряжениеназывается нор­мальным,если же по касательной к по­верхности — тангенциальным.

Количественной мерой, характеризую­щей степень деформации, испытываемой телом, является его относительная дефор­мация.Так, относительное изменение дли­ны стержня (продольная деформация)

e=Dl/l, (21.2) относительное поперечное растяжение

(сжатие)

e' = Dd/d, где d -— диаметр стержня.

Деформации e и e' всегда имеют раз­ные знаки (при растяжении Dl положи­тельно, a Ad отрицательно, при сжатии Dl отрицательно, a Ad положительно). Из опыта вытекает взаимосвязь e и e':

e'=-me,

где m — положительный коэффициент, за­висящий от свойств материала, называе­мый коэффициентом Пуассона.

Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное уд­линение e и напряжение s прямо про­порциональны друг другу:

s = Ee, (21.3)

где коэффициент пропорциональности Е называется модулем Юнга. Из вы­ражения (21.3) видно, что модуль Юнгаопределяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вы­текает, что

где k — коэффициент упругости.Выраже­ние (21.4) также задает закон Гука, со­гласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость s (e), установленная Гуком, выполняется

 

лишь в очень узких пределах до так на­зываемого предела пропорциональности(sп). При дальнейшем увеличении напря­жения деформация еще упругая (хотя за­висимость s (e) уже не линейна) и до пре­дела упругости(sу) остаточные деформа­ции не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекра­щения действия силы, изобразится не кри­вой ВО, а параллельной ей — CF. Напря­жение, при котором появляется заметная остаточная деформация (~=0,2 %), назы­вается пределом текучести(sт) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести(или об­ластью пластических деформаций).Мате­риалы, для которых область текучести значительна, называются вязкими,для ко­торых же она практически отсутствует — хрупкими.При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется преде­лом прочности(sp).

Диаграмма напряжений для реальных твердых тел зависит от различных факто­ров. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, кото­рая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до Dl. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадра­ту деформации (Dl)2.

Деформацию сдвига проще всего осу­ществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ftau (рис.36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига опре­деляется из формулы

tgg = Ds/h,

где Ds — абсолютный сдвиг параллельных слоев тела относительно друг друга; h — расстояние между слоями (для малых уг­лов tgg»g).

 

Тяготение. Элементы теории поля

§ 22. Законы Кеплера.

Закон всемирного тяготения

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, плане­ты описывают среди звезд сложнейшие траектории. Для объяснения петлеобраз­ного движения планет древнегреческий ученый К. Птоломей (II в. н.э.), считая Землю расположенной в центре Вселен­ной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого на­ходится Земля. Эта концепция получила название птоломеевой геоцентрической системы мираи при поддержке католиче­ской церкви господствовала почти полто­ры тысячи лет.

В начале XVI в. польским астрономом Н. Коперником (1473—1543) обоснована гелиоцентрическая система(см. § 5), сог­ласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория и наблюдения Коперника воспринимались как занима­тельная фантазия.

К началу XVII столетия большинство ученых убедилось, однако, в справедливо­сти гелиоцентрической системы мира. И. Кеплер (1571 — 1630), обработав и уточнив результаты многочисленных на­блюдений датского астронома Т. Браге (1546—1601), изложил законы движения планет:

1. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинако­вые площади.

3. Квадраты периодов обращения пла­нет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая дви­жение небесных тел, на основании законов

Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения:между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и m2) и обратно пропорциональная квадрату расстояния между ними (r2):

F=Gm1m2/r2. (22.1)

Эта сила называется гравитационной (или силой всемирного тяготения).Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать по форму­ле (22.1) силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегриро­вать), что является довольно сложной ма­тематической задачей.

Впервые экспериментальное доказа­тельство закона всемирного тяготения для земных тел, а также числовое определение гравитационной постоянной G проведено английским физиком Г. Кавендишем (1731 —1810). Принципиальная схема опыта Кавендиша, применившего крутиль­ные весы,представлена на рис. 37. Легкое коромысло А с двумя одинаковыми шари-

 

ками массой m = 729 г подвешено на уп­ругой нити В. На коромысле С укреплены на той же высоте массивные шары массой М=158 кг. Поворачивая коромысло С во­круг вертикальной оси, можно изменять расстояние между шарами с массами m и M. Под действием пары сил, при­ложенных к шарам m со стороны шаров M, коромысло А поворачивается в гори­зонтальной плоскости, закручивая нить В до тех пор, пока момент сил упру­гости не уравновесит момента сил тяготе­ния. Зная упругие свойства нити, по изме­ренному углу поворота можно найти воз­никающие силы притяжения, а так как массы шаров известны, то и вычислить значение G.

Значение G, приводимое в табли­цах фундаментальных физических пос­тоянных, принимается равным 6,6720•10-11Н•м2/кг2, т.е. два точечных тела массой по 1 кг каждое, находящиеся на расстоянии 1 м друг от друга, при­тягиваются с силой 6,6720-10-11Н. Очень малая величина G показывает, что сила гравитационного взаимодействия может быть значительной только в случае боль­ших масс.

§ 23. Сила тяжести и вес. Невесомость

На любое тело, расположенное вблизи Земли, действует сила тяготения F, под влиянием которой, согласно второму за­кону Ньютона, тело начнет двигаться с ускорением свободного падения g. Та­ким образом, в системе отсчета, связанной с Землей, на всякое тело массой m дей­ствует сила

P = mg,

называемая силой тяжести.

Согласно фундаментальному физиче­скому закону — обобщенному закону Га­лилея,все тела в одном и том же поле тяготения падают с одинаковым ускорени­ем. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел. Оно изменяется вблизи по­верхности Земли с широтой в пределах от

9,780 м/с2 на экваторе до 9,832 м/с2 на полюсах. Это обусловлено суточным вра­щением Земли вокруг своей оси, с одной стороны, и сплюснутостью Земли — с другой (экваториальный и полярный ра­диусы Земли равны соответственно 6378 и 6357 км). Так как различие значе­ний g невелико, ускорение свободного па­дения, которое используется при решении практических задач, принимается равным 9,81 м/с2.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

P = mg=F=GmM/R2,

где M — масса Земли; R — расстояние между телом и центром Земли. Эта форму­ла дана для случая, когда тело находилось на поверхности Земли.

Пусть тело расположено на высоте h от поверхности Земли, r0радиус Зем­ли, тогда

P=GmM/(R0 + h)2,

т. е. сила тяжести с удалением от поверхности Земли уменьшается.

В физике применяется также понятие веса тела. Весомтела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного паде­ния. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от g, т. е. когда на тело кроме силы тяжести действуют другие силы. Со­стояние тела, при котором оно движется только под действием силы тяжести, на­зывается состоянием невесомости.

Таким образом, сила тяжести действу­ет всегда, а вес появляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы, вследствие чего тело движется с ускорением а, отлич­ным от g. Если тело движется в поле тяготения Земли с ускорением a¹g, то к этому телу приложена дополнительная сила N, удовлетворяющая условию

N + P = ma.

Тогда вес тела

Р'=-N =P-ma=mg-ma = m(g-a),

т. е. если тело покоится или движется прямолинейно и равномерно, то а=0 и P' = mg. Если тело свободно дви­жется в поле тяготения по любой траекто­рии и в любом направлении, то а=g и Р' = 0, т. е. тело будет невесомым. Например, невесомыми являются тела, на­ходящиеся в космических кораблях, сво­бодно движущихся в космосе.

 

Поле тяготения и его напряженность

Закон тяготения Ньютона определяет за­висимость силы тяготения от масс взаимо­действующих тел и расстояния между ни­ми, но не показывает, как осуществляется это взаимодействие. Тяготение принадле­жит к особой группе взаимодействий. Си­лы тяготения, например, не зависят от того, в какой среде взаимодействующие тела находятся. Тяготение существует и в вакууме.

Гравитационное взаимодействие меж­ду телами осуществляется с помощью по­ля тяготения,или гравитационного поля.Это поле порождается телами и является формой существования материи. Основное свойство поля тяготения заключается в том, что на всякое тело массой т, вне­сенное в это поле, действует сила тяготе­ния, т. е.

F = mg. (24.1)

Вектор g не зависит от m и называется напряженностью поля тяготения. Напря­женность поля тяготенияопределяется си­лой, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действую­щей силой. Напряженность есть силовая характеристика поля тяготения.

Поле тяготения называется однород­ным,если его напряженность во всех точ­ках одинакова, и центральным,если во всех точках поля векторы напряженности направлены вдоль прямых, которые пере­секаются в одной точке (А), неподвижной по отношению к какой-либо инерциальной системе отсчета (рис.38).

Для графического изображения сило­вого поля используются силовые линии (линии напряженности). Силовые линии выбираются так, что вектор напряженно­сти поля действует по касательной к сило­вой линии.

 

Работа в поле тяготения. Потенциал поля тяготения

Рассмотрим, чему равна работа, соверша­емая силами поля тяготения при переме­щении в нем материальной точки мас­сой т. Вычислим, например, какую надо затратить работу для удаления тела мас­сой т от Земли. На расстоя­нии R (рис. 39) на данное тело действует сила

F=GmM/R2.

При перемещении этого тела на расстоя­ние dR затрачивается работа

Знак минус появляется потому, что сила и перемещение в данном случае противо­положны по направлению (рис.39).

Если тело перемещать с расстояния R1

 

до R2, то затрачивается работа

Из формулы (25.2) вытекает, что за­траченная работа в поле тяготения не зависит от траектории перемещения, а оп­ределяется лишь начальным и конечным положениями тела, т. е. силы тяготения действительно консервативны, а поле тя­готения является потенциальным (см. § 12).

Согласно формуле (12.2), работа, со­вершаемая консервативными силами, рав­на изменению потенциальной энергии системы, взятому со знаком минус, т. е.

А = -DП = -(П21)= П12.

Из формулы (25.2) получаем

П12= - m(GM/R1 - GM/R2).

(25.3)

Так как в формулы входит только раз­ность потенциальных энергий в двух со­стояниях, то для удобства принимают по­тенциальную энергию при R2®¥ равной нулю ( lim П2=0 при R2®¥). Тогда (25.3) запишется в виде П1= - GmM/R1. Так как пер­вая точка была выбрана произвольно, то



  • 9
  • Далее ⇒