КольцоНьютона. Применение явл интерференции. Интерферометры. Просветление оптики

Классическим примером полос равной толщины являются кольца Ньютона, Они наблюдаются при отражении света от соприкасающихся др. с др. плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис.7).Роль тонкой пленки, от поверхности которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающиеся при нормальном падении света на пластину. В этом случае sinQ1 = О и D равна удвоенной толщине зазора (предполагается n0 = 1). Из рис. 7 следует, чтоR2 = (R – b)2 + r2 » R2 – 2Rb + r2, (12),где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор b. Считаем b2 < 2Rb. Из (12) b = г2/2R. Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно к D = 2b = r2/R прибавить lо/2. В результате получитсяD = r2/R + lо/2. (13)В точках, для которых D = m'lо = 2m'(lо/2), (а)возникают максимумы, в точках, для которых D = (m' + 1/2)lо =(2m'+ 1)(lо/2), (б)- минимумыинтенсивности. Оба условия можно объединить в одно:D = mlо/2,причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Подставив сюда (13) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:rm = ÖRlо(m- 1)/2, (m =1,2,3,...). (14) Четным m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей.Значению m =1 соответствует г = 0, в этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, по известной l найти радиус кривизны линзы. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l0/2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.Другим практическим применением интерференции являются прецизионные измерения линейных размеров. Для этого служат приборы, называемые интерферометрами.Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п. Оптические схемы интерферометров и просветление оптики рассмотрим на практических занятиях.

 

19.ПРИНЦИП ГЮЙГЕНСА - ФРЕНЕЛЯ. ЗОНЫ ФРЕНЕЛЯ. Дифракциейназывается совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической оптики. Дифракция, в частности, приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Огибание препятствий звуковыми волнами (т.е. дифракция звуковых волн) наблюдается постоянно в обыденной жизни. Например, звук хорошо слышен за углом дома, т.е. звуковая волна его огибает. Для наблюдения дифракции световых волн необходимо создание спец. условий. Это обусловлено малостью длин световых волн. В пределе при l®0 законы волновой оптики переходят в законы геометрической оптики. Следовательно, отклонения от законов геометрической оптики при прочих равных условиях оказываются тем меньше, чем меньше длина волны. Между интерференцией и дифракцией нет существ, различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн. По историческим причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников, принято называть интерференцией волн, а вследствие суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией.Наблюдение дифракции осуществляется обычно по следующей схеме. На пути св. волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности св. волны. За преградой располагается экран, на котором возникает дифракционная картина.Различают два вида дифракции. Если источник света S и точка наблюдения М расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку М образуют практически параллельные пучки, говорят о дифракции в параллельных лучах или о дифракции Фраунгофера.В противном случае говорят о дифракции Френеля.Проникновение световых волн в область геометрической тени можно объяснить с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Однако этот принцип не дает сведений об амплитуде (интенсивности) волн, распространяющихся в различных направлениях. Френель дополнил пр. Гюйгенса представлением об интерференции вторичных волн. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Развитый т.о. принцип Гюйгенса получил название принципа Гюйгенса - Френеля:все источники вторичных волн,расположенные на поверхности фронта волны, когерентны между собой; световая волна в любой точке пространства является результатом интерференции волн, излучаемых вторичными источниками и достигших этой точки. Френель исключил возможность возникновения обратных вторичных волн. Поскольку точек фронта, являющихся когерентными источниками новых волн,бесчисленное множество, то расчет интерференции, в принципе, сводится к довольно громоздкому интегрированию. Для упрощения решения этого вопроса Френелем был предложен метод разделения фронта волны на зоны, так что волны от соседних зон приходят в точку наблюдения в противоположной фазе и ослабляют друг друга. С этим методом зон Френеляознакомимся при анализе важнейшего вопроса: как волновая теория объясняет практическую прямолинейность распространения света и каковы границы применимости законов геометрической оптики, основанных на этой прямолинейности.Пусть S - точечный источник монохроматического света в однородной среде. По принципу Гюйгенса от него распространяется во все стороны сферическая волна. В некоторый момент времени фронт этой волны занимает положение Ф, рис.1. Рассмотрим произвольную точку М перед фронтом и соединим её прямой линией с источником S .

Если бы свет распространялся прямолинейно вдоль луча SРМ, то достаточно было бы поставить на его пути сколь угодно малый экран 1 , чтобы в точке М была полная темнота. Благодаря волновой природе света в точку наблюдения М приходят волны не только от точки Р, но и от всех остальных точек фронта Ф, правда в различных фазах.Для расчета результатов интерференции Френель предложил провести ряд сфер с центрами в точке М и радиусами, соответственно равными МN1 = МP +l/2,MN2 = МN1 +l/2 = МP + 2l/2, MN3 = МN2 +l/2 = МP + 3l/2, и т.д. (1) Тем самым фронт волны Ф разобьется на ряд кольцевых зон, заштрихованных на рис.1 через одну. Волны, приходящие в М от точек каждой последующей зоны, сдвинуты по отношению к волнам, приходящим от соответствующих точек предыдущей зоны, на λ/2, т.е. находятся в противоположных фазах, и их амплитуды при интерференции вычитаются. Из геометрического рассмотрения можно получить выражение для радиуса внешней границы m - ной зоны: rm=√abmλ/(a + b), если а = b = 1 м и λ = 0,5 мкм, то r1 = 0,5 нм. Занумеруем величины суммарных амплитуд волн, приходящих в точку М от каждой последующей зоны:А0, А1, А2, а3, А4, А5, А6, .... Благодаря различию в расстояниях зон до точки наблюдения и в углах, под которыми видны эти площадки из М, величины этих амплитуд монотонно убывают: А0 > А1> А2> а3> А4> А5> А6, .... В качестве допустимого приближения можно принять, что амплитуда колебания от некоторой k - той зоны Френеля Аk равна среднему арифметическому от амплитуд примыкающих к ней зон: Аk = (Аk+1 + Аk-1)/2. (2) Полная амлитуда волны, приходящей в точку М, равна сумме амплитуд, создаваемых каждой отдельной зоной. При этом амплитуды от всех четных зон надо считать с одинаковым знаком (например, положительными), а амплитуда волн от всех нечетных зон (приходящих в точку М) - с обратным знаком. Т.о., А = А01 + А2 –А3,+ А4- А5 +.... (3) Используя (2), можно это выражение представить в видеА = А0/2 + (А0/2 – А12/2) + (А2/2 -Аз + А4 /2) + ... » А0/2, (4) так как оставшаяся часть от амплитуды последней зоны ±Аk/2 практически ничтожно мала. Т.о., суммарная амплитуда от воздействия всего фронта Ф в точке наблюдения М равна А = А0/2, т.е. эквивалентна половине воздействия нулевой зоны Френеля. Не следует при этом думать, что в М приходит свет только от всех точек половины нулевой зоны Френеля, остальные же участки фронта Ф, интерферируя, гасят др. др.

 

20. Дифракция света на круглом экране и круглом отверстии.Если на пути света от точечного источника поставить не слишком большой круглый экран 2 так, чтобы перпендикуляр, опущенный на него из источника света, проходил через его центр, то в М по-прежнему будет свет, хотя и меньшей интенсивности.Действительно, проведя через край экрана 2 линию МN0, мы можем произвести деление фронта, начиная от точки N0, на такие же зоны Френеля, как и ранее. Повторяя все рассуждения, легко убедиться, что для идеального круглого экрана 2 суммарная амплитуда в М будет А' = А0¢/2, где а0' - амплитуда от нулевой зоны, отсчитываемой от N0. По мере увеличения экрана 2 величина А' будет убывать, но точка М остается освещенной всегда практически до тех пор, пока экран не закроет достаточно большого числа зон Френеля. Лишь в этом последнем случае станет справедливым положение геометрической оптики, что препятствие, перекрывающее луч SМ, даст в точке наблюдения отсутствие света (геометрическая тень).Более того, если например, сделать "зонный экран" 3, состоящий из ряда колец, закрывающих все нечетные (или все четные) зоны Френеля, то суммарная амплитудаА= А02 + А4 +.... (5)оказывается даже большей, чем при отсутствии всякого экрана. Т.е такой экран действует подобно собирательной линзе. Еще большего эффекта можно достичь, не перекрывая четные (или нечетные) зоны, а изменяя фазу их колебаний на p. Это можно осуществить с помощью прозрачной пластинки, толщина которой в местах, сотв. четным или нечетным зонам, отличается на надлежащим образом подобранную величину. Такая пластинка называется фазовой зонной пластинкой.По сравнению с перекрывающей зоны амплитудной зонной пластинкойфазовая даст дополнительное увеличение амплитуда в два раза, а интенсивности света - в 4 раза.Деление фронта волны Ф на зоны Френеля является относительным и зависит от расстояния до точки наблюдения М,Пренебрегать дифракционными явлениями и рассматривать свет распространяющимся прямолинейно вдоль лучей, исходящих от источника, допустимо лишь, если размеры экрана велики по ср. с размерами зон Френеля. Чем короче l, тем меньше размеры этих зон и тем точнее можно пользоваться приближенными понятиями лучевой (геометрической) оптики. Т.к. для видимого света l = 0,4 - 0,8 мкм, то при наблюдении макроскопических тел этими приближениями можно пользоваться с достаточной точностью. Однако при уменьшении размеров тел начинают проявляться дифракционные явления.Поставим на пути сферической световой волны непрозрачный экран с вырезанным в нем круглым отверстием радиуса г. Расположим экран так, чтобы перпендикуляр, опущенный из источника света S, попадал в центр отверстия. На продолжении этого перпендикуляра возьмем точку Р. Если расстояния а и b удовлетворяют соотношению (*), где m - целое число, то отверстие оставит открытым ровно m первых зон Френеля, построенных для точки Р. Из (rm=√abmλ/(a + b) число открытых зон Френеля определяется выражением m = r02(1/а+1/b)/l. (6)А какая будет освещенность в других точках экрана? Вследствие симметричного расположения отверстия относительно прямой SР освещенность в разных точках экрана будет зависеть только от расстояния х от точки Р. Если смещаться по экрану в точку Р¢ и далее, то дифракционная картина будет иметь вид чередующихся светлых и темных концентрических колец. Если отверстие открывает лишь часть центральной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает.Аналогичная картина на экране получается и в рассмотренном выше случае, когда между источником света и экраном помещается непрозрачный круглый диск. Дифракционная картина на экране будет иметь вид чередующихся светлых и темных концентрических колец. В центре картины помещается светлое пятно, см. рис.

 

21.Дифракция света на одной щели. Дифракционная решетка.Пусть на бесконечно длинную щель падает плоская световая волна, рис.2.Поместим за щелью собирательную линзу, а в фокальной плоскости линзы - экран. Волновая поверхность падающей волны, плоскость щели и экран параллельны друг другу. Поскольку щель бесконечна, картина, наблюдаемая в любой плоскости, перпендикулярной к щели, будет одинакова. Поэтому достаточно исследовать характер картины в одной такой плоскости.Когда фронт волны дойдет до щели и займет положение MN, то все его точки являются новыми источниками волн, распространяющихся во все стороны вперед от щели. Рассмотрим волны, распространяющиеся от точек плоскости MN в направлении, составляющем некоторый угол j с первоначальным. Эти волны, проходя через линзу, сойдутся в некоторой точке B на экране, расположенном в фокальной плоскости линзы. Лучи, распространяющиеся от щели под различными углами, в результате интерференции дадут дифракционную картину.Опустим из точки M перпендикуляр MF на направление выделенного пучка лучей. Тогда от плоскости MF и далее до фокальной плоскости Е параллельные лучи не меняют своей разности хода. Разность хода, определяющая условия интерференции, возникает лишь на пути от исходного фронта MN до плоскости MF и различна для разных лучей.Для расчета интерференции всех этих лучей применим метод зон Френеля. Для этого мысленно разделим линию NF на ряд отрезков длиной l/2. На расстоянии NF = аsinj уложитсяZ = (аsinj)/(l/2) (1)таких отрезков. Проводя из концов этих отрезков линии, параллельные MF, до встречи их с MN, мы разобьём фронт волны в щели на ряд полосок одинаковой ширины. Эти полоски и являются в данном случае зонами Френеля. Отсюда следует, что волны, идущие от каждых двух соседних зон Френеля, приходят в точку B в противоположной фазе и гасят др. др. Если число зон четное, Z = 2k (где k - целое число, неравное нулю), то каждая пара соседних зон взаимно погасит др.др., так что при данном угле j на экране будет минимум освещенности. Углы j, соответствующие этим минимумам освещенности,находятся из условия: аsinjmin = 2kl/2.(2)В промежутках между минимумами наблюдаются максимумы освещенности при углах j, определяемых из условия аsinjmax = (2k + 1)l/2. (3)Для этих углов фронт MN разбивается на нечетное число зон Френеля Z = 2k +1 и одна из зон остается непогашенной. Амплитуда в этом случае будет составлять долю ~ 1/(2k+1), а интенсивность ~ 1/(2k+1)2 от суммарной амплитуды, создаваемой всеми зонами фронта MN.Центральный максимум будет расположен в точке О против центра щели. По обе стороны от него интенсивность будет спадать до первого минимума, а затем увеличиваться до следующего максимума, см. рисунок. На экране Е будут наблюдаться перемежающиеся светлые и темные полосы с постепенными переходами между ними. Центральная полоса будет наиболее яркой, а освещенность боковых максимумов будет убывать от центра к переферии.Ширина и число этих полос будут зависеть от отношения l/а. Из (1) видно, чтоzmax = a/(l/2) (4)Если щель очень узкая, а«l, то вся поверхность MN является лишь небольшой частью одной зоны и колебания от всех её точек будут по любому направлению распространяться почти в одинаковой фазе. Условие минимума (2) не может быть выполнено даже для самого меньшего значения k = 1 и во всех точках экрана будет свет. Такая щель является практически точечным источником света, и волна от неё будет распространяется практически одинаково во всех направлениях. Если щель очень широкая, а»l, то уже первый минимум будет соответствовать очень малому отклонению от прямолинейного распространения света под углом(j1)min = arcsinla »la <<1. (5) Следующий минимум будет при угле (j2)min » 2l/a и т.д. В результате прохождения через такую широкую щель плоской волны на экране мы увидим геометрическое изображение щели, окаймлённое по краям тонкими перемеживающимися темными и светлыми полосками. Чётко выраженные широкие дифракционные максимумы и минимумы будут наблюдаться лишь в промежуточном случае, когда ширина щели всего в несколько раз превышает длину волны и zmax порядка 3-5. При освещении щели монохроматическим светом дифракционные максимумы для различных цветов разойдутся. Как видно из (3), чем меньше l, тем под меньшими углами расположены дифракционные максимумы. В центр экрана лучи всех цветов приходят совместно - если щель освещалась белым светом, то изображение в центре также будет белым. Справа и слева от центрального максимума будут наблюдаться дифракционные спектрыпервого, второго и т. д. порядка,обращенные фиолетовым краем к центру, рис.3. Однако они настолько расплывчаты, что отчетливого разделения различных длин волн с помощью дифракции на одной щели получить невозможно.

22.ДИФРАКЦИОННАЯ РЕШЕТКА, ДИФРАКЦИОННЫЙ СПЕКТР. ДИСПЕРСИЯ И РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ РЕШЁТКИ. Для увеличения интенсивности и более четкого разделения цветов следует воспользоваться не одной щелью, а целой дифракционной решеткой,которая представляет собой ряд параллельных щелей одинаковой ширины а, разделённых между собой непрозрачными промежутками шириной b. Сумма а + b = 1 (1)называется периодом или постоянной дифракционной решетки.Конструктивно дифракционная решетка для видимого света изготавливается путем нанесения на прозрачную стеклянную пластинку с помощью алмазного резца делительной машины ряда тонких параллельных штрихов-канавок одинаковой ширины b на равных расстояниях а др. от др. Поверхность стекла внутри канавок становится матовой, и эти канавки являются непрозрачными промежутками, разделяющими участки с ненарушенной поверхностью - "щели"_решётки. .Рассмотрим плоскую монохроматическую волну, падающую на решетку, рис.2. Каждая из параллельных щелей решётки дает на экране Е дифракционную картину, показанную на рис.2 пунктиром. Линза L собирает параллельные лучи, идущие от всех щелей под углом φк главной оптической оси, в одну и ту же точку М фокальной плоскости. При параллельности всех щелей дифракционной решётки и строгой одинаковости их размеров амплитуды колебаний, создаваемых в точке М каждой щелью в отдельности, будут одинаковы. Практически одинаковым будет и распределение вдоль экрана интенсивностей и амплитуд колебаний, приходящих от каждой щели. Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей.На центральной линии экрана (проходящей через главный фокус линзы О) лучи, идущие от всех щелей, сходятся без дополнительной разности хода, т.е. приходят в одинаковой фазе. При этом их амплитуды просто складываются, и в случае N одинаковых щелей амплитуда суммарного колебания будет в N раз, а интенсивность в N2 раз больше, чем в случае одной щели.Лучи, идущие от разных щелей под углом j, отличным от нуля, сходятся в точке М, пройдя различные пути и имея различные фазы колебаний; они будут давать при интерференции более сложную картину. Рассмотрим две соседние щели. Из рис.2 видно, что лучи, идущие от соответственных точек обеих щелей (крайних, центральных, промежуточных), имеют одну и ту же разность хода D=lsinj (2)и приходят в т. М со сдвигом фазы y = 2p(l sinj)/l. Такой же точно сдвиг фазы y будет между колебаниями, приходящими от третьей щели и второй, четвертой и третьей, и т.д.Резкое возрастание амплитуды результирующего колебания будет в тех случаях, когда амплитуды колебаний от всех щелей аi направлены одинаково, т.е. имеют сдвиг фазы, целый кратный от 2p, рис.3, что соответствует разности хода между соседними щелями D кратной четному числу полуволн:lsinjk = 2kl /2 = kl, k = 0, ±1, ±2, ±3, .... (3)Условие (3) характеризует положение главных максимумов дифракционной решетки. При углах jk, удовлетворяющих (3), А = NА1 и интенсивность дифракционной картины возрастает в N2 раз по ср. с дифракцией от одной щели. С увеличением N возрастает четкость дифракционной картины - увеличивается интенсивность и уменьшается ширина главных максимумов. Вследствие интерференции происходит перераспределение энергии в пространстве, и эта энергия концентрируется во все более узком интервале углов Djm.Подчеркнем, что хотя положение гл. максимумов решетки не зависит от числа щелей, наличие большого числа щелей очень существенно: 1)яркость каждой линии растет как N2, 2) ширина каждой линии убывает как 1/N. Тем самым увеличивается точность производимых измерений.Если на дифракционную решетку будет падать немонохроматический свет, то дифракционные максимумы, для лучей разного цвета пространственно разойдутся. Нулевой макс. (k=0) для всех длин волн будет совпадать при j = 0, но уже максимумы первого порядка (k=1) будут для фиолетовых лучей расположены ближе к центру, чем для красных. Между ними расположатся максимумы промежуточных цветов, и мы будем наблюдать дифракционный спектр первого порядка. Между нулевым и первым порядками расположена практически темная зона очень слабых побочных максимумов. Такая же темная зона расположена между красным концом спектра первого порядка и фиолетовым краем спектра второго порядка, рис.4. Рис.4.Благодаря узости дифракционных максимумов решетки различные цвета почти не накладываются др. на др. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т.е. дифракционная решетка может быть использована как спектральный прибор (рис.5.).Спектр дифракционной решетки получается тем более четким, чем больше щелей N содержит решетка. Максимальное число наблюдаемых дифракционных спектров определяется из условия, чтобы sinjk <1, т.е. kmax£ l/l, (4)Из условияsinjk =kl/l (5) видно, что синусы углов в спектре данного порядка прямо пропорциональны длинам волн, т.е. дифракционные спектры, в отличие от призматических, всегда одинаковы и равномерны. По­мещая дифракционную решетку D на столик гониометра ( рис.5) и освещая ее пучком параллельных лучей через щель коллиматора К, можно, измеряя угол jk, под которым видны данные лучи в зрительную трубу Т, точно найти их длину волны l. Дифракционные решетки имеют обычно от 100 до 600 щелей на мм, т.е. период l =10-2 мкм. Лучшие решетки содержат до 1800 щелей на мм, при общей длине до нескольких см., так что общее число щелей достигает 105. Отражательная решетка изготовляется процарапыванием параллельных штрихов на зеркальной поверхности. Её теория, по существу, не отличается от теории прозрачной решетки. Для некоторых областей спектра стекло непрозрачно (например, для УФ-лучей). В этом случае нужно пользоваться кварцевой оптикой и отражательными решетками. Без линз можно обойтись, заменяя плоскую отражательную решетку вогнутой. Основными характеристиками всякого спектрального прибора является его дисперсия и разрешающая сила.Дисперсия определяет угловое или линейное расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 ангстрем). Разрешающая сила определяет минимальную разность длин волн dl, при которой две линии воспринимаются в спектре раздельно. Угловой дисперсиейназывается величина D = djdl, (6),где dj - угловое расстояние между спектр, линиями, отличающимися на dl (рис.6а). Можно показать, чтоD = k/lcosφ, (7)откуда следует, что угловая дисперсия обратно пропорциональна периоду решетки l. Чем выше порядок спектра k, тем больше дисперсия. Дифракционная решеткаЛинейной дисперсиейназывают величину Dлин = d /dl, (8) где d - линейное расстояние на экране или на фотопластинке между спектр. линиями, отличающимися по длине на dl. Линейная дисперсия связана с угловой дисперсией соотношениемDлин = fD, (9) где f - фокусное расстояние линзы, собирающей дифрагирующие лучи на экране. Приняв во внимание(7),запишемDлин=fk/lcosφ Разрешающей силойспектрального прибора называют безразмерную величину R = ldl (11) где dl - минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно. Возможность разрешения (т.е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояния между ними (которое определяется дисперсией прибора), но также и от ширины спектрального, максимума (рис. 6). Критерий Рэлея. Разрешающая сила дифракционной решетки пропорциональна порядку спектра k и числу щелей N, т.е. Rдифр. реш. = kN. (12) Современные дифракционные решетки обладают довольно высокой разрешающей силой (до 2×105).

23. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта. Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ): n = f(λ).Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г. Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения. Рассмотрим дисперсию света в призме Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α1. После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что φ = θ(n-1), т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав. Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые. На явлении нормальной дисперсии основано действие призменных спектрометров, широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу. Электронная теория дисперсии света. Из макроскопической электромагнитной теории Максвелла следует, что n = εμ, но в оптической области спектра для всех веществ μ ≈ 1, поэтомуn = ε. (1)Формула (1) противоречит опыту, т.к. величина n, являясь переменной n = f(λ), равняется в то же время определенной постоянной ε (постоянной в теории Максвелла). Кроме того, полученные из этого выражения значения n не согласуются с экспериментальными данными. Для объяснения дисперсии света была предложена электронная теория Лоренца,в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны. Ознакомимся с этой теорией на примере однородного изотропного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна ε = 1 + χ = 1 + Р/(ε0Е), где χ – диэлектрическая восприимчивость среды, ε0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е). Тогда n2 = 1 + Р/(ε0Е),(2) т.е. зависит от Р. Для видимого света частота ω~1015 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны наз. оптическими электронами. Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Пусть n0 – концентрация атомов в диэлектрике, тогда Р = р n0 = n0 е х. (3)Подставив (3) в (2) получим n2 = 1 + n0 е х /(ε0Е),(4) т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е0cos ωt. Уравнение вынужденных колебаний электрона для простейшего случая d2x/dt202 x = (F0/m)cos ωt = (e/ m) E0cos ωt,(5) где F0 = еE0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω0 = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n2 в зависимости от констант атома (е, m, ω0) и частоты внешнего поля ω, т.е. решим задачу дисперсии. Решением (5) является Х = Аcos ωt, (6)где А = еЕ0/m(ω02 – ω2).(7) Подставим (6) и (7) в (4) и получимn2 = 1 + n0e20m(ω02 – ω2). (8)Из (8) видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω0 значение n2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия). При ω = ω0 значение n2 = ± ∞; в области частот от ω = ω0 до ω = ∞ значение n2 меньше 1 и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n2 к n, получим график зависимости n = n(ω), рис.1. Область АВ – область аномальная дисперсии. Изучение аномальной дисперсии – Д.С. Рождественский. Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. С точки зрения электронной теории, взаимодействие света и вещества сводится к взаимодействию электромагнитного поля световой волны с атомами и молекулами вещества. Электроны, входящие в состав атомов, могут колебаться под действием переменного электрического поля световой волны. Часть энергии световой волны затрачивается на возбуждение колебаний электронов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения, а также переходит в другие формы энергии, например, в энергию теплового излучения. Поглощение светового излучения можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества. Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света I = Ie-K l (1)где I0λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l; Кλ – коэффициент поглощения, зависящий от λ, т.е. Кλ = f(λ). Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С:Кλ = c (2)где cλ – коэффициент пропорциональности, который также зависит от λ. Учитывая (2), можно закон Бугера (1) переписать в виде:Iλ = Ie-c Cl (3) cλ–показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то cλ называют молярным коэффициентом поглощения.Соотношение (3) носит название закона Бугера-Ламберта-Бера. Коэффициент поглощения для металлов имеет большие значения (примерно 103 - 105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощается свет. На рис. 1 показана типичная зависимость коэффициента поглощения света от частоты в области полосы поглощения. Видно, что внутри полосы поглощения наблюдается аномальная дисперсия. Однако поглощение света веществом должно быть значительным, чтобы повлиять на ход показателя преломления. Зависимостью коэффициента поглощения от длины волны (частоты) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения этих длин волн стекло будет казаться черным. Это явление используется при изготовлении светофильтров, которые в зависимости от хим. состава стекол пропускают свет только определенных длин волн, поглощая остальные.

24.ЕСТЕСТВЕННЫЙ И ПОЛЯРИЗОВАННЫЙ СВЕТ. СТЕПЕНЬ ПОЛЯРИЗАЦИИ. ЗАКОН МАЛЮСА.Напомню, что поляризованным называется свет, в котором направления колебаний светового вектора `Е упорядочены каким-либо образом. В естественном свете колебания разных направлений светового вектора `Е быстро и беспорядочно сменяют друг друга.Рассмотрим два взаимно перпендикулярных электрических колебания свершающихся вдоль осей х и у и отличающихся по фазе на d (Рис.1):Еx = A1 coswt, Еy = A2 cos(wt + d). (1)Результирующая напряженность Е является векторной суммой Ех и Еу (рис.1), причем угол j равенtg j = Е yx = A2 cos(wt + d)/ A1 coswt, (2)Если разность фаз претерпевает случайные хаотические изменения, то и угол j, т.е. направление светового вектора Е, будет испытывать скачкообразные неупорядоченные изменения. В соответствии с этим естественный свет можно представить как наложение двух некогерентных электромагнитных волн, поляризованных во взаимно перпендикулярных плоскостях и имеющих одинаковую интенсивность. Такое представление намного упрощает рассмотрение прохождения естественного света через поляризационные устройства.1)Допустим, что световые волны Ех и Еу когерентны, причем d равно нулю или p. Тогда согласно (2)tgj = ± А21 = const.Следовательно, результирующее колебание совершается в фиксированном направлении - волна оказывается плоско поляризованной.2)В случае, когда А1 = А2 и d = ±p/2,tgj = ± tgwtт.к. (соs(wt±л/2) = ±sinwt). Отсюда вытекает, что плоскость колебаний поворачивается вокруг направления луча с угловой скоростью, равной частоте колебания w. В этом случае свет 6удет поляризованным по кругу.3)В случае произвольного постоянного d в результате сложения двух взаимно перпендикулярных колебаний получим вектор Ё, конец которого движется по эллипсу (в частном случае, может получиться движение по прямой или по окружности), т.е. мы получаем в результате сложения таких волн эллиптически поляризованную световую волну. При разности фаз d=0 или d=p, эллипс вырождается в прямую и получается плоско поляризованный свет. При d = ±p/2 и равенстве амплитуд складываемых волн эллипс превращается в окружность - получается свет поляризованный по кругу.В зависимости от направления вращения вектора Е различают правую и левую эллиптическую и круговую поляризацию.Если по отношению к направлению, противоположному направлению луча, вектор Е вращается по часовой стрелке, поляризация называется правой, в противоположном случае - левой.Плоскость, в которой колеблется световой вектор в плоско поляризованной волне, называется плоскостью колебаний. Плоскостью поляризацииназывается не плоскость, в которой колеблется вектор Е, а перпендикулярная к ней плоскость.Плоско поляризованный свет можно получить из естественного с помощью приборов, называемых поляризаторами.Эти приборы свободно пропускают колебания, параллельные плоскости, которую мы будем называть плоскостью поляризатора,и полностью или частично задерживают колебания, перпендикулярные к этой плоскости. Поляризатор, задерживающий перпендикулярные к его плоскости колебания только частично, называется несовершенным.Просто поляризатором мы будем для краткости называть идеальный поляризатор, полностью задерживающий колебания, перпендикулярные к его плоскости, и не ослабляющий колебаний, параллельных плоскости. Поляризатор представляет собой среду, структура и свойства которой в различных направлениях, перпендикулярных лучу, различны, т.е. эта среда анизотропна. Такими средами для света являются преимущественно кристаллические тела с невысокой степенью симметричности.На выходе из несовершенного поляризатора получается свет, в котором колебания одного направления преобладают над колебаниями других направлений. Такой свет называется частично поляризованным. Его можно рассматривать как смесь естественного и плоско поляризованного. Частично поляризованный свет, как и естественный, можно представить в виде наложения двух некогерентных плоско поляризованных волн с взаимно перпендикулярными плоскостями колебаний. Отличие заключается в том, что в случае естественного света интенсивность этих волн одинакова, а в случае частично поляризованного - разная.Если пропустить частично поляризованный свет через поляризатор, то при вращении прибора вокруг направления луча интенсивность прошедшего света будет изменяться в пределах от Imax до Imin, причем переход от одного из этих значений к другому будет совершаться при повороте на угол, равный p/2 (за один полный оборот два раза будет достигаться максимума и два раза мин. значение интенсивности). ВеличинаP = (Imax – Imin)/( Imax + Imin)(3)называется степенью поляризации. Для плоско поляризованного света Imin = 0 и Р=1; для естественного света Imax = Imin и Р = 0. Т.е. любой естественный луч света не поляризован. К эллиптически поляризованному свету понятие степени поляризации не применимо (у такого света колебания вектора напряженности электрического поля полностью упорядочены, так что степень поляризации всегда равна единице).Пусть на поляризатор (см. рис.) падает плоско поляризованный свет амплитуды а0 и интенсивности I0. Сквозь поляризатор пройдет составляющая колебания с амплитудой А = а0 соsj, где j- угол между плоскостью колебаний падающего света и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением I = I 0 соs2 j. - закон Малюса.(4)Поставим на пути естественного луча два поляризатора, плоскости которых образуют угол j. Из первого поляризатора выйдет плоско поляризованный свет, интенсивность которого I 0 составляет половину интенсивности естественного света. Согласно закону Малюса из второго поляризатора выйдет свет интенсивности I 0 соs2j. Т.о., интенсивность света, прошедшего через два поляризатора, равнаI = (Iестcos2j)/2.(5) Максимальная, интенсивность, равная (1/2)Iест получается при j=0 (поляризаторы параллельны). При j = p/2 интенсивность равна нулю - скрещенные поляризаторы света не пропускают.В случае света, поляризованного по кругу, вращение поляризатора не сопровождается (как и в случае естественного света) изменением интенсивности света, прошедшего через поляризатор.

 

25.ПОЛЯРИЗАЦИЯ СВЕТА ПРИ ОТРАЖЕНИИ И ПРЕЛОМЛЕНИИ. ЗАКОН БРЮСТЕРА. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ. АНИЗОТРОПИЯ КРИСТАЛЛОВ.Если угол падения естественного света на границу раздела двух диэлектриков (например, на поверхность стеклянной пластинки) отличен от нуля, отраженный и преломлённый лучи оказываются частично поляризованными. В отражённом луче преобладают колебания, перпендикулярные кплоскости падения (на рис.1 эти колебания обозначены точками), в преломлённом луче - колебания, параллельные плоскости падения (на рис.1они изображены двусторонними стрелками). Степень поляризации зависит от угла падения. При угле падения Q= QБр (на рис. QБр =IB) отраженный луч полностью поляризован (он содержит только колебания, перпендикулярные к плоскости падения). Степень поляризации преломленного луча при угле падения, равном углу Брюстера, достигает наибольшего значения, однако этот луч остается поляризованный только частично.Соотношение (1) носит название закона Брюстера,а угол QБр называется углом Брюстера.При падении света под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны.При прохождении света через все прозрачные кристаллы, за исключением принадлежащих к кубической системе, наблюдается явление, получившее название двойно­го лучепреломления.Это явление заключается в том, что упавший на кристалл луч естественного света разделяется внутри кристалла на два луча, распространяющиеся, вообще говоря, с разными скоростями и в различных направленияхКристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные и двуосные.У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления, в частности он лежит в одной плоскости с падающим лучом и нормалью к преломляющей поверхности, этот луч называется обыкновенными обозначается буквой о. Для другого луча, называемого необыкновенным(его обозначают буквой е), отношение синусов угла падения и угла преломления, не остается постоянным при изменении угла падения. Да­же при нормальном падении света на кристалл необыкновенный луч, вообще говоря, отклоняется от нормали, рис.2б. Кроме того, необыкновенный луч не лежит, как правило, в одной плоскости с падающим лучом и нормалью к преломляющей поверхности. Примерами одноосных кристаллов могут служить исландский шпат, кварцитурмалин. У двуосных кристаллов (слюда, гипс) оба луча необыкновенные- показатели преломления для них зависят от направления в кристалле. У одноосных кристаллов имеется направление, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь и с одинаковой скоростью. У двуосных кристаллов имеется два таких направления. Такие направления в кристалле называются оптической осью кристалла. Оптическая ось - это определенное направление в кристалле и любая прямая, параллельная данному направлению, является оптической осью.Любая плоскость, проходящая через оптическую ось, называется главным сечением или главной плоскостью кристалла.Обычно пользуются главным сечением, проходящим через световой луч.Исследования обыкновенного и необыкновенного лучей показали, что обалуча полностью поляризованы во взаимно перпендикулярных, направлениях(рис.2). Плоскость колебаний обыкновенного луча перпендикуляра к главному сечению кристалла. В необыкновенном луче колебания светового вектора совершаются в плоскости, совпадающей с главным сечением. По выходе из кристалла оба луча отличаются др. от др. только направлением поляризации, так что названия "обыкновенный" и "необыкновенный" лучи имеют смысл только внутри кристалла. В некоторых кристаллах один из лучей поглощается сильнее другого. Это явление называется дихроизмом.Очень сильным дихроизмом в видимых лучах обладает турмалин,в котором обыкновенный луч практически полностью поглощается на длине 1мм. В кристаллах сульфата йодистого хининаодин из лучей поглощается на пути примерно в 0,1мм. Это обстоятельство используется для изготовления поляризационного устройства, называемого поляроидом.Оно представляет собой целлулоидную пленку, в которую введено большое количество одинаково ориентированных кристаллов сульфата йодистого хинина.Двойное лучепреломление объясняется анизотропией кристаллов. В кристаллах некубической системы диэлектрическая проницаемость e оказывается зависящей от направления. В одноосных кристаллах e в направлении оптической оси и в направлениях, перпендикулярных к ней имеет различные значения eêê и e^. В других направлениях e имеет промежуточные значения. Поскольку n = Öe, следовательно, из анизотропии e вытекает, что электромагнитным волнам с различными направлениями колебаний вектора Ё соответствуют разные значения n. Поэтому скорость световых волн зависит от направления колебаний светового вектора `Е.Одноосные кристаллы характеризуются показателем преломления обыкновенного луча,равным n0 = c/V0, и показатель преломления необыкновенного луча, перпендикулярного к оптической оси, равным ne = с/Vе. Последнюю величину называют просто показателем преломления необыкновенного луча.В зависимости от того, какая из скоростей больше, различают положительные и отрицательные одноосные кристаллы.У положительных кристаллов Vе меньше V0 (это значит ne> n0).Ход обыкновенного и необыкновенного лучей в кристалле можно определить с помощью принципа Гюйгенса.

26.ИСКУССТВЕННОЕ ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ.ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ.В прозрачных аморфных телах, а также в кристаллах кубической системы может возникать двойное лучепреломление под влиянием внешних воздействий. В частности, это происходит при механических деформациях тел. Мерой возникающей оптической анизотропии служит разность показателей преломления обыкновенного и необыкновенного лучей. Опыт показывает, что эта разность пропорциональна механическому напряжению s в данной точке тела:n0 – ne = ks (1)(k-коэффициент пропорциональности, зависящий от свойств вещества).Поместим стеклянную, пластинку Q между скрещенными поляризаторами Р1 и Р2. Пока стекло не деформировано, такая система света не пропускает. Если же пластинку подвергнуть сжатию, свет через систему начнет проходить, причем наблюдаемая в прошедших лучах картина оказывается испещренной цветными полосами. Каждая такая полоса соответствует одинаково деформированным местам пластинки. Следовательно, по расположению полос можно судить о распределении напряжений внутри пластинки. На этом основан метод исследования напряжений. Изготовленная из прозрачного изотропного материала (например, из плексиглаза) модель какой-либо детали или конструкции помещается между скрещенными поляризаторами. Модель подвергается действию нагрузок, подобных тем, какие будет испытывать само изделие. Наблюдаемая при этом в проходящем свете картина позволяет определить распределение напряжений, а также судить об их величине.Возникновение двойного лучепреломления в жидкостях и в аморфных твердых телах под воздействием электрического поля было обнаружено Керром в 1875г. Это явление получило назв. эффекта Керра.В 1930г. этот эффект был обнаружен и в газах.Схема установки для исследования эффекта Керра в жидкостях (рис.2) сост. из ячейки Керра,помещенной между скрещенными поляризаторами Р и Р'. Ячейка Керра представляет собой герметичный сосуд с жидкостью, в которую введены пластины конденсатора. При подаче на пластины напряжения между ними возникает практически однородное электрическое поле. Под его действием жидкость приобретает свойства одноосного кристалла с оптической осью, ориентированной вдоль поля. Возникающая разность показателей преломленияn0 – ne = kE2 (2)На пути l между обыкновенным и необыкновенным лучами возникает разность ходаD = (n0 – ne )l = klE2или разность фазd = (Dl0)2p = 2pklE2/l0. (3)Это выражение принято записывать в виде d=2pВl Е2, (4)где В = к/λ0 -характерная для вещества величина, называется постоянной Керра.Из известных жидкостей наибольшей постоянной Керра обладает нитробензол. Постоянная Керра зависит от Т и от l.Эффект Керра объясняется различной поляризуемостью молекул по разным направлениям. В отсутствии поля молекулы ориентированы хаотическим образом, поэтому жидкость в целом не обнаруживает анизотропии. Под действием поля молекулы поворачиваются так, чтобы в направлении поля были ориентированы либо их дипольные электрические моменты (у полярных молекул), либо направления наибольшей поляризуемости (у неполярных молекул). В результате жидкость становится оптически анизотропной. Ориентирующему действию поля противится тепловое движение молекул. Этим обусловлено уменьшение пост. Керра с повышением Т.Время, в течение которого устанавливается (при включении поля) или исчезает (при выключении электрического поля) преимущественная ориентация молекул, составляет около 10-10 с. Поэтому ячейка Керра, помещенная между скрещенными поляризаторами, может служить практически безынерционным затвором. В отсутствии напряжения на пластинах конденсатора затвор будет закрыт. При включении напряжения, затвор пропускает значительную часть света, падающего на первый поляризатор (рис.2). Эффект Покельса – для кристаллов.Естественное вращение. Некоторые вещества, называемые оптически активными,обладают способностью вызывать вращение плоскости поляризации проходящего через них плоско поляризованного света. К числу таких веществ принадлежат кристаллические тела (например, кварц, киноварь), чистые жидкости (скипидар, никотин) и растворы оптически активных веществ в неактивных растворителях (водные растворы сахара, винной кислоты и др.).Кристаллические вещества сильнее всего вращают плоскость поляризации в случае, когда свет распространяется вдоль оптической оси кристалла. Угол поворота j пропорционален пути l, пройденному лучом в кристалле: j = al. (5)Коэф. a называется постоянной вращения.Эта постоянная зависит от длины волны (дисперсия вращательной способности).В растворах угол поворота плоскости поляризации пропорционален пути света в растворе и концентрации активного вещества с;j = gс l.(6)где g - удельная постоянная вращения.В зависимости от направления вращения плоскости поляризации оптически активные вещества подразделяются, на право- и левовращающие.Направление вращения не зависит от направления луча. Все оптически активные вещества существуют в двух разновидностях - правовращающей и левовращающей. Существует право- и левовращающий кварц, право- и левовращающий сахар и т.д. Молекулы или кристаллы одной разновидности являются зеркальным отражением молекул или кристаллов другой разновидности, Буквами обозначены отличающиеся др. от др. атомы или группы атомов (радикалы). Молекула б является зеркальным отражением молекулы а.Если между двумя скрещенными поляризаторами поместить оптически активное вещество (кристалл кварца, прозрачную кювету с раствором сахара и т.п.), то поле зрения просветляется. Чтобы снова получить темноту, нужно повернуть один из поляризаторов на угол j, определяемый выражением (5) или (6), и можно определить концентрацию раствора с. Такой способ определения концентрации применяется в производстве различных веществ, в частности, в сахароварении (прибор называется сахариметром).Магнитное вращение плоскости поляризации.Оптически неактивные вещества приобретают способность вращать плоскость поляризации под действием МП. Это явление было обнаружено Фарадеем и называется иногда эффектом Фарадея.Оно наблюдается только при распространении света вдоль направления намагниченности. Поэтому для наблюдения эф. Фарадея в полюсных наконечниках просверливают отверстия, через которые пропускают световой луч. Исследуемое вещество помещается между полюсами магнита.Угол поворота плоскости поляризации j пропорционален пути l, проходимому светом в веществе, и намагниченности вещества. Намагниченность в свою очередь пропорциональна напряженности магнитного поля Н. Поэтому j = VlH (7) Коэффициент V называется постоянной Верде или удельным магнитным вращением.Постоянная V, как и постоянная вращения a, зависит от длины волны.Направление вращения определяется направлением магнитного поля. От направления светового луча знак вращения плоскости поляризации не зависит. Поэтому, если, отразив луч зеркалом, заставить его пройти через намагниченное вещество ещё раз в обратном направлении, поворот плоскости поляризации удвоится. Магнитное вращение плоскости поляризации обусловлено возникающей под действием магнитного поля прецессией электронных орбит. Оптически активные вещества под действием магнитного поля приобретают дополнительную способность вращать плоскость поляризации, которая складывается с их естественной способностью.

27. ЭФФЕКТ ДОПЛЕРА ДЛЯ СВЕТОВЫХ ВОЛН.Эффект Доплера в акустике объясняется тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колебаний и приемника по отношению к среде, в которой происходит распространение звуковых волн. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника электромагнитных волн. Так как особой среды, служащей носителем электромагнитных волн не существует, то частота световых волн, воспринимаемых приемником (наблюдателем), определяется только относительной скоростью источника и приемника (наблюдателя). Закономерности эффекта Доплера для электромагнитных волн устанавливаются на основе специальной теории относительности.Свяжем с приемником света начало координат системы К, а с источником – начало координат системы К' Оси х и х' направим вдоль вектора скорости V, с которой система К' (т.е. источник) движется относительно системы К (т.е. приемника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К' иметь вид Е(х',t' ) = A' cos[ω' (t' + x'/C) + α'],(1) ,где ω' – частота волны, фиксируемая в системе отсчета, связанной с источником, т.е. частота с которой колеблется источник.Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета, следовательно, уравнение световой волны во всех инерциальных системах отсчета описывается одинаково, и в системе К волна описывается уравнением: Е(х,t) = Acos[ω(t + x/C) + α], (2) где ω – частота, фиксируемая в системе отсчета К, т.е. частота, воспринимаемая приемником. Уравнение волны в системе К можно получить из уравнения (1), перейдя от х' и t' к х и t с помощью преобразований Лоренца, заменив в (1) х' и t' в соответствии с преобразованием Лоренца, и таким образом связать частоты световых волн, излучаемых источником ω' и воспринимаемых приемником ω: ω = ω' (√1 – V/C)/ √1 + V/C = ω' (√1 –β) / √1 + β. (3) Формула (3) определяет так называемый продольный эффект Доплера, наблюдаемый при движении приемника вдоль линии, соединяющей его с источником. В случае, если V<< C, формулу (3) можно разложить в ряд по степеням β и пренебрегая членом порядкаβ2,получим ω=ω'(1–V/C) = ω' (1 –β). (4)При удалении источника V > 0 и, согласно (4), ω < ω', следовательно, при удалении источника и приемника друг от друга (при их положительной относительной скорости) наблюдается сдвиг в более длинноволновую область (λ>λ') – так называемое красное смещение. При сближении источника и приемника (при их отрицательной относительной скорости V < 0) наблюдается сдвиг в более коротковолновую область (ω >ω', λ < λ') – так называемое фиолетовое смещение.Из (4) можно найти относительное изменение частоты: Δω/ω = - V/С. (5) Из теории относительности следует, что, кроме продольного эффекта для световых волн должен существовать также поперечный эффект Доплера, наблюдаемый при движении приемника перпендикулярно линии, соединяющей его с источником. В этом случае (Q = π/2) ω = ω' √1 – V2 /C2 = ω' √(1 –β2 ), (6) а относительное изменение частоты при поперечном эффекте ДоплераΔω/ω = - V2 /2С2 (7) Пропорционально квадрату отношения V/С и, следовательно, значительно меньше, чем при продольном эффекте. Поэтому обнаружение поперечного эффекта Доплера связано с большими трудностями. Попречный эффект, хотя и много меньше продольного, имеет принципиальное значение, так как не наблюдается в акустике (при V<<С из (6) следует, что ω = ω' !!!), и является, следовательно, релятивистским эффектом. Он связан с замедлением течения времени движущегося наблюдателя. Экспериментальное обнаружение поперечного эффекта Доплера явилось еще одним подтверждением справедливости теории относительности. Он был обнаружен в 1938 г. американским физиком Г. Айвсом .Продольный эффект Доплера был впервые обнаружен в 1900 г. русским астрофизиком А.Белопольским и используется при исследовании атомов и молекул. Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекулы относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от ω' (1 – V/C) до ω' (1 + V/C), где ω' – частота, излучаемая молекулами, V – скорость теплового движения молекулы. Таким образом, регистрируемая ширина спектральной линии составит величину Δω = 2 ω' V/C, (8) называемую доплеровской шириной спектральной линии. По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а, следовательно, и о температуре светящегося газа.Эффект Доплера используется для изучения движения космических тел, получил широкое распространение в радиотехнике и радиолокации, например, в радиолокационных измерениях расстояний до движущихся объектов.

28.Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного телаТела, нагретые до высоких температур, светятся, т.е. испускают электромагнитное излучение. Электромагнитное излучение всех длин волн обуславливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. Вследствие значительной массы колеблющихся ионов при их колебании излучается длинноволновое электромагнитное излучение, соответствующее инфракрасному диапазону длин волн. Движение электронов, входящих в состав атомов или молекул, инициирует более коротковолновое излучение, соответствующее видимому и ультрафиолетовому излучениям. Излучение тела сопровождается потерей энергии. Для того чтобы обеспечить длительное излучение энергии, совершаемое за счет энергии теплового движения заряженных частиц вещества, необходимо пополнять убыль внутренней энергии, сообщая телу соответствующее количество теплоты. В состоянии равновесия тело излучает столько энергии, сколько поглощает ее. Тепловое излучение является равновесным излучением. Если тело начнет излучать в единицу времени больше энергии, чем получает ее, то температура тела начнет понижаться и уменьшится количество излучаемой телом энергии до уровня, когда, наконец, не установится равновесие. Такое равновесное состояние устойчиво, т.е. при нарушении его, равновесное состояние вновь установится. Все другие виды излучения тел являются неравновесными и называются люминесценцией, которая возникает под действием света (фотолюминесценция), потока быстрых электронов (катодолюминесценция), энергии электрического поля (электролюминесценция) и химических превращений внутри тела (хемилюминесценция).Тепловое излучение свойственно всем телам при температуре выше 0 К. Поскольку тепловое излучение является равновесным, то для описания его свойств можно использовать законы термодинамики. Количественной характеристикой интенсивности теплового излучения является энергетическая светимость телаR(T) – количество энергии, испускаемой единицей поверхности нагретого тела в единицу времени во всех направлениях (в телесном угле 2π, соответствующем полусфере). Эта величина является интегральной характеристикой излучающего тела, так как определяет энергию излучаемых электромагнитных волн различных частот ν. Поток энергии, приходящийся на единичный интервал частот, называется излучательной способностью тела r(ν,t), очевидно, что r(ν,T) = d R(T)/d ν, где d R(T) – энергия электромагнитного излучения, испускаемого за единицу времени (мощность и