Виды и взаимосвязи относительных величин

Относительные величины образуют систему взаимосвязанных статистических показателей. По содержанию выражаемых количественных соотношений выделяют следующие типы относительных величин.

1. Относительная величина выполнения задания.Рассчитывается как отношение фактически достигнутого в данном периоде уровня к запланированному. Так, в 1988 г. было произведено стиральных машин 6103 тыс. шт. при плане (госзаказе) 6481 тыс. шт. Относительная величина выполнения плана составила

.

Следовательно, плановое задание было недовыполнено на 5,8 %.

На практике различают две разновидности относительных показателей выполнения плана. В первом случае сравниваются фактические и плановые уровни (таков пример, рассмотренный выше). Во втором случае в плановом задании устанавливается абсолютная величина прироста или снижения показателя и соответственно проверяется степень выполнения плана по этой величине. Так, если планировалось снизить себестоимость единицы продукции на 24,2 руб., а фактическое снижение составило 27,5 руб., то плановое задание по снижению себестоимости выполнено с ростом в 27,5 : 24,2 = 1,136 раза, т.е. план перевыполнен на 13,6 %. Показатель выполнения плана по уровню себестоимости в данном случае будет меньше единицы. Если фактическая себестоимость изделия равнялась 805,8 руб. при плановой 809,1 руб., то величина выполнения плана составила 805,8 : 809,1 = 0,996, или 99,6 %. Фактический уровень затратив одно изделие оказался на 0,4 % ниже планового.

В аналитических расчетах при исследовании взаимосвязей чаще применяется оценка выполнения плана по уровню показателя. Оценка же выполнения плана по изменению уровня обычно приводится для целей иллюстрации, особенно если планируется снижение абсолютного значения затрат, расходов по видам и т.п.

Относительные величины динамики, планового задания и выполнения плана связаны соотношением i=iпл.з.× iвып.пл.

2. Относительная величина динамики. Характеризует изменение уровня развития какого-либо явления во времени. Получается в результате деления уровня признака в определенный период или момент времени на уровень этого же показателя в предшествующий период или момент.

Так, по данным топливно-энергетического баланса СССР, ресурсы 1980 г. оценивались в 2171,1 млн. т у.т.(условного топлива), а 1987 г. – в 2629,1 млн. т у.т. Относительная величина динамики составила .

Таким образом, объем топливно-энергетических ресурсов вырос за 7 лет в 1,211 раза (коэффициент роста, индекс роста, индекс). В процентном выражении это 121,1 % (темп роста).

Иначе говоря, за 7 лет объем ресурсов увеличился на 21,1 % (темп прироста). В среднем каждый год объем ресурсов возрастал по сравнению с предыдущим годом в , или на 2,77 %(среднегодовой коэффициент или индекс роста и среднегодовой темп прироста).

3. Относительные величины структуры. Характеризуют доли, удельные веса составных элементов в общем итоге. Как правило, их получают в форме процентного содержания:

Для аналитических расчетов предпочтительнее использовать коэффициентное представление, без умножения на 100.

Совокупность относительных величин структуры показывает строение изучаемого явления.

Рассмотрим, например, структуру формирования и распределения топливно-энергетических ресурсов (ТЭР) России в форме топливно-энергетического баланса (ТЭБ) (табл. 4.1.).

Таблица 4.1

Источники образования топливно-энергетических ресурсов России

Источник образования 1990 г. 1997 г.
млн. т у.т. % млн. т у.т. %
1. Добыча топлива 2. Электроэнергия гидроэлектростанций 3. Импорт 4. Прочие поступления 5. Остаток на начало года 1895,6 60,1 17,8 28,2 169,4 87,31 2,77 0,82 1,30 7,80 2230,1 71,3 33,0 64,9 229,8 84,82 2,71 1,26 2,47 8,74
Итого 2171,1 100,0 2629,1 100,0

Из табл. 4.1. видно, что основная часть ресурсов формируется за счет добычи топлива. Примерно 8–9% годовых ресурсов имелось на начало года в виде запасов.

5. Относительные величины координации (ОВК).Характеризуют отношение частей данной совокупности к одной из них, принятой за базу сравнения. ОВК показывают, во сколько раз одна часть совокупности больше другой либо сколько единиц одной части приходится на 1, 10, 100, 1000, ... единиц другой части. Относительные величины координации могут рассчитываться и по абсолютным показателям, и по показателям структуры.

Так, приняв за базу сравнения поставки топливных ресурсов на экспорт в 1987 г., увидим, что на каждую условную тонну экспортных поставок приходится в 2,342 раза больше ресурсов, потребляемых внутри страны для производства энергии, и в 2,363 раза больше ресурсов, предназначенных для производственно-технологических целей. Уровень остатков на конец года составляет 57,8 % по сравнению с годовыми поставками на экспорт

(9,20 : 15,91 = 242 : 418,3 = 0,578).

По относительным величинам координации можно восстановить исходные относительные показатели структуры, если вычислить отношение относительной величины координации данной части (ОВК) к сумме всех ОВК (включая и ту, которая принята за базу сравнения):

.

Например, доля экспортных поставок составляет

1 : (2,342 + 2,364 + 1 + 0,578) = 0,1591, или 15,9 %.

6. Относительные величины сравнения (ОВС). Характеризуют сравнительные размеры одноименных абсолютных величин, относящихся к одному и тому же периоду либо моменту времени, но к различным объектам или территориям. Посредством этих показателей сопоставляются мощности различных видов оборудования, производительность труда отдельных рабочих, производство продукции данного вида разными предприятиями, районами, странами. Например, по производству нефти и газа в 1985 г. СССР превосходил США: по нефти – в 1,36 раза, по газу – в 1,24 раза. Уровень производства электроэнергии (млрд. кВт • ч) в СССР составлял от уровня США 1544:2650 = 0,583, или 58,3 %.

При известных коэффициентах роста (индексах динамики) и начальном соотношении уровней можно найти условие равенства уровней в предстоящем периоде t:

.

Отсюда ОВСa / б =Ya / Yб=(ia / iб)t,

т.е. .

Найденное значение t показывает, через какой период времени уровень изучаемого явления на объекте А сравняется с уровнем того же явления на объекте Б.

В частности, при среднегодовых темпах прироста производства электроэнергии в США 4,5 % и в СССР 6,9 % (по данным за 1961–1985 гг.)

.

Сопоставляя показатели динамики разных явлений, получают еще один вид относительных величин сравнения – коэффициенты опережения (отставания) по темпам роста или прироста. Так, если производительность труда на предприятии возросла на 12%, а фонд оплаты труда увеличился на 7,5 %, то коэффициент опережения производительности труда по темпам роста составит 112 : 107,5 = 1,042; коэффициент опережения по темпам прироста равен 12 : 7,5 = 1,60.

7. Относительные величины интенсивности. Характеризуют степень распределения или развития данного явления в той или иной среде. Представляют собой отношение абсолютного уровня одного показателя, свойственного изучаемой среде, к другому абсолютному показателю, также присущему данной среде и, как правило, являющемуся для первого показателя факторным признаком. Так, при изучении демографических процессов рассчитываются показатели рождаемости, смертности, естественного прироста и т.д. как отношение числа родившихся (умерших) или величины прироста населения за год к среднегодовой численности населения данной территории в расчете на 1000 чел. Если получаемые значения очень малы, то делают расчет на 10 000 человек. Так, по состоянию на 1987 г. имеем в целом по стране Крожд. = 19,8 ‰, Кест.прирост = 9,9 ‰. В том числе по г. Новосибирску Крожд. = 15,2 ‰, Ксм.= 9,1 ‰, Кбрачности = 10,9 ‰, Кразв.= 5,2 ‰ и т.д.

Относительными величинами интенсивности выступают, например, показатели выработки продукции в единицу рабочего времени, затрат на единицу продукции, трудоемкости, эффективности использования производственных фондов и т.д., поскольку их получают сопоставлением разноименных величин, относящихся к одному и тому же явлению и одинаковому периоду или моменту времени. Метод расчета относительных величин интенсивности применяется при определении средних уровней (среднего уровня выработки, средних затрат труда, средней себестоимости изделий, средней цены и т.д.). Поэтому распространено мнение, что относительные величины интенсивности – это один из способов выражения средних величин.

Понятие о средних величинах

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина – это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней. Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними. Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

 

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель, который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних.
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную.
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

 

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду, если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической


,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам, т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн. Частота, чел. Частость, Середина интервала,
600-700 700-800 800-900 900-1000 1000-1100 1100-1200 3 6 8 9 3 1 0,10 0,20 0,267 0,30 0,10 0,033 (600+700):2=650 (700+800):2=750 850 950 1050 1150 1950 4500 6800 8550 3150 1150 65 150 226,95 285 105 37,95
  - 869,9

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней. Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление. Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется способом отсчета от условного нуля или способом моментов.
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражается формулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы

Стаж работников, лет Количество работников Середина интервала
0 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 12 16 23 28 17 14 2,5 7,5 12,7 17,5 22,5 27,5 -15 -10 -5 0 5 10 -3 -2 -1 0 1 2 -36 -32 -23 0 17 28
Итого - - - -46

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

 

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной. Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая:
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних.

Пример. В ходе торгов на валютной бирже за первый час работы заключены трисделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Номер сделки Сумма продажи, млн. грн., Курс гривны, грн., Частота (количество приобретенных долларов), млн. дол.,
1 2 3 45,0 25,2 40,4 5,00 5,04 5,05 9,0 5,0 8,0
Итого 110,6 - 22,0

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качествеопределяющего показателя: млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

 

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.
Средняя геометрическая взвешенная используется, когда временные интервалы неодинаковы:
,
где – временной интервал.

 

Средняя квадратическая
Средняя квадратическая применяется, когда в качестве вариант используются отклонения фактических значений признака от средней арифметической или от заданной нормы.
Средняя квадратическая простая:
.
Средняя квадратическая взвешенная:

Пример. Вычислить среднюю величину измеренных отклонений фактической длины изделий от заданной нормы.

Отклонения, мм, Число изделий,
-1,8 -0,8 0,2 1,0 1,4 1 3 4 1 1 3,24 0,64 0,04 1 1,96 3,24 1,92 0,16 1 1,96
  8,28

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

 

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.