ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА И ОСОБЕННОСТИ КАРДИОМИОЦИТОВ В РАБОТЕ СЕРДЦА

МЕХАНИЗМ СОКРАЩЕНИЯ И РАССЛАБЛЕНИЯ В СКЕЛЕТНЫХ МЫШЦАХ. ПРИНЦИП ЭЛЕКТРОМЕХАНИЧЕСКОГО СОПРЯЖЕНИЯ. РЕГУЛЯТОРНЫЕ И СОКРАТИТЕЛЬНЫЕ БЕЛКИ СКЕЛЕТНЫХ МЫШЦ.

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга.

Изменяется длина саркомера за счет взаимного перекрытия актиновых и миозиновых филаментов. Механизм скольжения нитей включает несколько последовательных событий. А. Электрохимическое преобразование: 1.Генерация ПД.Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки. Область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны

2.Распространение ПД по Т-системе. 3.Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации

Б.Хемомеханическое преобразование: 4. Взаимодействие ионов Са2+ с тропонином, освобождение активных центров на актиновых филаментах. 5 Взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги. 6.Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Для расслабления необходимо понижение концентрации ионов Са2+.Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ.

Тропонин и тропомиозин – регуляторные белки скелетных мышц.Они регулируют взаимодействие между актиновыми и миозиновыми филаментами. А Актин и миозин – сократительные белки.

 

ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА И ОСОБЕННОСТИ КАРДИОМИОЦИТОВ В РАБОТЕ СЕРДЦА.

Сердечная мышца обладает физиологическими свойствами: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией. Возбудимость — это способность кардиомиоцитов возбуждается при действии на нее механических, химических, электрических и других раздражителей. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону "все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) ("ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением ("все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Проводимость — это способность сердца проводить возбуждение. Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает все время систолы. По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность. В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза. Импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка–Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением. Сила и частота сердечных сокращений меняется и под действием различных нервно–гуморальных факторов без изменения длины мышечных волокон. Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца является АТФ. Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Лабильность - низкая из-за длительности рефрекатерного периода.