Відстані від основи висоти піраміди

Геометрія. 11 клас

Многогранники

Двогранним кутом називається фігура, утворена двома півплощинами зі спільною прямою, що їх обмежує, —ребром двогранного кута. Півплощини називаються гранями двогранного кута.
Площина, перпендикулярна до ребра двогранного кута, перетинає його грані по двох півпрямих. Кут, утворений такими півпрямими, називається лінійним кутом двогранного кута (див. рисунок). За міру двогранного кута приймається міра його лінійного кута.

Міра двогранного кута не залежить від вибору лінійного кута.
Побудувати лінійний кут двогранного кута можна двома способами.
1. Обрати точку на ребрі кута й провести через цю точку перпендикуляри до ребра, що лежать у гранях кута (див. рисунок нижче зліва). Кут між цими перпендикулярами — лінійний кут даного двогранного ­кута.
2. Обрати точку на грані двогранного кута й опустити з неї перпендикуляри на ребро кута та на іншу грань двогранного кута (див. рисунок нижче справа). З’єднати основи цих перпендикулярів. Кут між цим відрізком і перпендикуляром, проведеним до ребра двогранного кута, буде лінійним кутом даного двогранного кута.

Тригранний і многогранний кути

Нехай промені a, b, c виходять з однієї точки й не лежать в одній площині.
Тригранним кутом називається фігура, яка складається з трьох плоских кутів , , (див. рисунок). Ці кути називаються гранями тригранного кута, а їх сторони — ребрами. Спільна вершина плоских кутів називається вершиною тригранного кута. Двогранні кути, утворені гранями тригранного кута, називаються двогранними кутами тригранного кута. Аналогічно дають означення многогранного кута.

Теорема 1. У тригранному куті кожний плоский кут менший за суму двох інших.
Теорема 2. Сума плоских кутів тригранного кута менша за .

Многогранники

Многогранник— це таке тіло, поверхня якого складається із скінченної кількості плоских многокутників. Многогранник називається опуклим, якщо він лежить по один бік від площини кожного з плоских многокутників на його поверхні. Спільна частина такої площини й поверхні опуклого многокутника називається гранню.
На рисунку нижче зліва зображений не­опук­лий многогранник; на рисунку справа — опуклий.

Грані опуклого многогранника є плоскими опуклими многокутниками. Сто­рони граней називаються ребрами мно­гогранника, а вершини граней — вершинами мно­гогран­ника.

Призма

Призмоюназивається многогранник, який складається з двох плоских многокутників, що лежать у різних площинах і суміщаються паралельним перенесенням, та всіх відрізків, що сполучають відповідні точки цих многокутників (див. рисунок). Многокутники називаються основами призми, а відрізки, які сполучають відповідні вершини, — бічними ребрами призми.

Позначення: .
Бічна поверхня призми складається з паралелограмів. Кожний із них має дві сторони, які є відповідними сторонами основи, а дві інші — суміжними бічними ребрами. Основи призми рівні й лежать у паралельних площинах. Бічні ребра призми паралельні та рівні. Висотою призми називається відстань між площинами її основ.
Відрізок, який сполучає дві вершини призми, що не належать одній грані, називається діагоналлю призми. (На рисунку — висота, і — діа­гоналі.)
Діагональні перерізи — це перерізи призми площинами, що проходять через два бічних ребра, які не належать одній грані (див. рисунки).

Призма називається прямою, якщо її бічні ребра перпендикулярні до основ. У протилежному випадку призма називається похилою.
Бічні грані прямої призми — прямокутники, висота прямої призми дорівнює бічному ребру, діагональні перерізи є прямокут­никами.
Бічною поверхнеюпризми називається сума площ бічних граней. Повна поверхня призми дорівнює сумі бічної поверхні й площ основ.
Теорема 1. Бічна поверхня прямої призми дорівнює добутку периметра основи та висоти, тобто довжини бічного ребра.
Перпендикулярним перерізом призми будемо називати переріз площиною, перпендикулярною до бічного ребра призми (а це означає, що ця площина є перпендикулярною до всіх бічних ребер призми).
Теорема 2. Бічна поверхня похилої призми дорівнює добутку довжини бічного ребра і периметра перпендикулярного перерізу.
На рисунку — перпендикулярний переріз.
Sб = HPосн;
Sп = Sб + 2Sосн.
Sб = lPпер;
Sп = Sб + 2Sосн.

Очевидно, що ця теорема є правильною й у випадку прямої призми, бо тоді перпендикулярний переріз буде перерізом площиною, паралельною площинам основ призми.
Зверніть увагу: якщо деякий многокутник є перпендикулярним перерізом призми, то його внутрішні кути є лінійними кутами двогранних кутів між відповідними бічними гранями.
У випадку прямої призми лінійними кутами двогранних кутів між бічними гранями є безпосередньо кути основи.
Приклад
На рисунку — пряма ­призма.

— лінійний кут двогранного кута між гранями і .
Призма називається правильною, якщо:
• в основі її лежить правильний много­кутник;
• призма є прямою.

Паралелепіпед

Паралелепіпедом називається призма, в основі якої лежить паралелограм.
Усі грані паралелепіпеда — паралело­грами.
Грані паралелепіпеда, які не мають спільних вершин, називаються протилежними.
Теорема 1. Протилежні грані паралелепіпеда є паралельними й рівними.
Паралелепіпед залишається паралелепіпедом у всіх випадках, коли за його основу вважаємо довільну його грань (див. рисунок).
Теорема 2. Діагоналі паралелепіпеда перетинаються в одній точці й точкою перетину діляться навпіл.
Із цього випливає, що точка перетину діагоналей паралелепіпеда є його центром си­метрії.
Зверніть увагу: у прямого паралелепіпеда є чотири діагоналі, які попарно дорівнюють одна одній.
На рисунку ; .
Це випливає з властивостей похилих, оскільки — рівні перпендикуляри до площини основи ABCD.

Якщо дві діагоналі прямого паралелепіпеда виходять із сусідніх вершин, то більша з них та, яка проектується у більшу діагональ основи, тобто таку діагональ паралелограма, яка лежить проти тупого кута. Отже, якщо на наведеному вище рисунку вважати кут ABC тупим, отримаємо , .
Прямий паралелепіпед, у якого основою є прямокутник, називається прямокутним паралелепіпедом (див. рисунок).

Усі грані прямокутного паралелепіпеда — прямокутники, які можна розбити на три пари рівних між собою. Довільну грань прямокутного паралелепіпеда можна вважати його основою. Враховуючи, що при паралельному проектуванні довільний паралелограм може зображуватися довільним паралелограмом, зо­браження прямокутного паралелепіпеда ніяк не відрізняється від зображеня будь-якого прямого паралелепіпеда.
Довжини непаралельних ребер називаються лінійними розмірами(вимірами) прямокутного паралелепіпеда.
Теорема 3. У прямокутному паралелепіпеді всі діагоналі рівні. Квадрат діагоналі дорівнює сумі квадратів трьох його вимірів.
Усі двогранні кути прямокутного паралелепіпеда є прямими.
Прямокутний паралелепіпед має три пари рівних між собою діагональних перерізів. Кожний із цих перерізів є прямокутником (див. ри­сунки).

Кожна пара перерізів перетинається по прямій, яка проходить через точки перетину діагоналей протилежних граней. Відрізки між цими точками є паралельними й дорівнюють одному з ребер прямокутного паралелепіпеда.
Прямокутним є трикутник, який утворюється діагоналлю прямокутного паралелепіпеда, діагоналлю бічної грані й стороною основи (див. рисунок). Наприклад, .

Прямокутний паралелепіпед має центр симетрії — це точка перетину його діагоналей.
Він також має три площини симетрії, які проходять через центр симетрії паралельно граням.
Прямокутний паралелепіпед, у якого всі ребра рівні, називається кубом.
Площина будь-якого діагонального перерізу куба є його площиною симетрії. Таким чином, куб має дев’ять площин симетрії.
На рисунку розглянемо взаємне розміщення деяких елементів прямого паралелепіпеда:

— кут між діагоналлю бічної грані й площиною основи ( — перпендикуляр, — похила, СD — проекція).
— кут між діагоналлю прямого паралелепіпеда й площиною основи ( — перпендикуляр, — похила, АС — проекція).
— кут нахилу діагоналі до бічної грані (AD — перпендикуляр, — похила, — проекція).
Нехай — прямий паралелепіпед (див. рисунок), де ABCD — ромб. Проведемо його переріз площиною, що проходить через діагональ основи BD і вершину .

У перерізі отримаємо рівнобедрений трикутник .
— лінійний кут двогранного кута між площинами основи й перерізу. за властивістю діагоналей ромба, — перпендикуляр, — похила, СО — проекція. За теоремою про три перпендикуляри: .

Піраміда

Пірамідою називається многогранник, який складається з плоского многокутника — основи піраміди, точки, яка не лежить у площині основи — вершини піраміди, і всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами.
Висота піраміди — перпендикуляр, опущений із вершини піраміди на площину основи.
Піраміда називаєтьсяn-кутною, якщо її основою є n-кутник. Трикутна піраміда називається також тетраедром. Бічна грань піраміди — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.
На рисунку SO — висота піраміди. Тоді — кут між бічним ребром і площиною основи (SO — перпендикуляр, — похила, — проекція).

З основи висоти піраміди (точки О) проведемо перпендикуляр на сторону основи (наприклад, АЕ). Основу цього перпендикуляра (точку F) з’єднаємо з вершиною піраміди (точкою S). За теоремою про три перпендикуляри: . (SO — перпендикуляр, SP — похила, OF — проекція, за побудовою.) Отже, — лінійний кут двогранного кута між площиною бічної грані ASEі площиною ­основи.
Для розв’язування задач про піраміду дуже важливо з’ясовувати, де розміщена основа її висоти.
1. Якщо виконується хоча б одна з таких умов:
• усі бічні ребра піраміди рівні;
• усі бічні ребра нахилені до площини основи під одним і тим самим кутом;
• усі бічні ребра утворюють однакові кути з висотою піраміди;
• усі бічні ребра рівновіддалені від основи висоти, — то основою висоти піраміди є центр кола, описаного навколо основи піраміди.
Бічне ребро l, висота H і радіус R описаного навколо основи кола утворюють прямокутний трикутник:

У цьому випадку бічну поверхню можна знайти за формулою , де l — довжина бічного ребра, , ... — плоскі кути при вершині.
2. Якщо виконується хоча б одна з таких умов:
• всі бічні грані нахилені до площини основи під одним і тим самим кутом;
• усі бічні грані мають однакові висоти;
• висоти бічних граней утворюють однакові кути з висотою піраміди;
• бічні грані рівновіддалені від основи ви­соти, — то основа висоти лежить у центрі кола, вписаного в основу піраміди.
На рисунку — прямокутний , — радіус вписаного кола в ABCDEF;

— висота піраміди, SP — висота бічної грані;
— ліній­ний кут двогранного кута між бічною гранню й площиною основи;
О — центр вписаного в основу кола, тобто точка перетину бісектрис ABCDEF.
У цьому випадку .
3. Якщо бічне ребро перпендикулярне до площини основи, то це ребро є висотою піраміди (див. рисунки).

У цьому випадку і кути нахилу бічних ребер і відповідно до площини основи. є лі­нійним кутом двогранного кута між бічними гранями SAC і SBA.
4. Якщо бічна грань перпендикулярна до площини основи (див. рисунок), то ви­сотою піраміди буде висота цієї грані (за теоремою «Якщо пряма, яка лежить в одній із двох перпендикулярних площин, перпендикулярна до прямої їх перетину, то вона пер­пендикулярна до другої пло­щини»).
5. Якщо дві бічні грані перпендикулярні до площини основи, то висотою піраміди є їх загальне бічне ребро.

Відстані від основи висоти піраміди

Відстань від основи висоти піраміди до бічного ребра — перпендикуляр, опущений із точки О на це ребро (див. рисунок). Зверніть увагу: , але на рисунку не повинен бути прямим: кути при паралельному проектуванні не зберігаються.
OF — відстань від основи висоти до бічного ребра SE;
ON — відстань від основи висоти до бічної грані ASB (про цю відстань докладніше дивись нижче).

, де — кут між ребром SE і площиною основи.