Структура и основные циклы биохимических круговоротов

Так как Земля есть конечное физическое тело, то любые химические элементы (в чистом виде или в виде соединений) также физически конечны. За миллионы лет их ассимиляции фотосинтетиками, т.е. превращения в более сложные вещества, они должны, казалось бы, быть давно исчерпанными, полностью связанными в мертвой органике, превратиться в косную материю. Однако этого не происходит.

Чтобы биосфера продолжала существовать и на Земле не прекращалось развитие жизни, должны происходить непрерывные химические превращения ее живого вещества. Иными словами, вещества после использования одними организмами должны переходить в усвояемую для других организмов форму. Такая циклическая миграция веществ и химических элементов может осуществляться только при определенных затратах энергии, источником которой является Солнце. Академик В.Р. Вильямс указывал, что единственный способ придать чему-то конечному свойства бесконечного — это заставить конечное вращаться по замкнутой кривой, т.е. вовлечь его в круговорот.

Из-за геологических изменений лика Земли часть вещества биосферы может исключаться из этого круговорота. Например, такие биогенные осадки, как каменный уголь, нефть на многие тысячелетия консервируются в толще земной коры, но в принципе не исключено их повторное включение в биосферный круговорот.

Круговорот веществ— это многократное участие веществ в процессах, протекающих в атмосфере, гидросфере, литосфере, в том числе и тех их слоях, которые входят в биосферу планеты. При этом выделяют два основных круговорота: большой (геологический) и малый (биологический и биогеохимический).

Большой круговоротдлится сотни миллионов лет. Горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан. Здесь они образуют морские напластования и лишь частично возвращаются на сушу с осадками, с извлеченными человеком из воды организмами. Крупные, но медленно протекающие геотектонические изменения (опускание материков и поднятие морского дна, перемещение морей и океанов) приводят к тому, что эти напластования возвращаются на сушу и процесс повторяется. Границы геологического круговорота значительно шире границ биосферы, его амплитуда захватывает слои земной коры далеко за пределами биосферы. И, самое главное, в процессах указанного круговорота живые организмы играют второстепенную роль.

Напротив, биологический круговоротвещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов-консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, доступных растениям и вновь вовлекаются ими в поток вещества.

Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием энергии Солнца и химических реакций называется биогеохимическим циклом.Его часто называют большим биосферным кругом, имея в виду безостановочный планетарный процесс перераспределения вещества, энергии и информации, многократно входящих в непрерывно обновляющиеся экологические системы биосферы.

Биогеохимические круговороты в биосфере подразделяют на: 1) круговороты газового типас резервным фондом веществ в атмосфере или гидросфере (азота, кислорода, диоксида углерода, водяных паров) и 2) круговороты осадочного типас менее обширными резервуарами в земной коре (фосфора, кальция, железа).

Круговорот воды.Постоянный перенос воды происходит с одного места в другое в масштабе всей планеты, главным образом между океаном и сушей. Он осуществляется в основном непосредственно за счет энергии Солнца, однако живые организмы оказывают на него важное регулирующее воздействие. В процессе переноса воды часто происходит изменение агрегатного состояния последней (превращение жидкой воды в твердую, парообразную, и наоборот), что позволяет поддерживать равновесие между суммарным испарением и выпадением осадков на планете. Испаряясь, вода с содержащимися в ней некоторыми веществами воздушными течениями переносится на десятки, сотни и тысячи километров. Выпадая в виде осадков, она способствует разрушению горных пород, делает их минералы доступными для растений и микроорганизмов, размывает верхний почвенный слой, после чего уходит вместе с растворенными частицами в океаны и моря. Подсчитано, что с поверхности Земли только за 1 минуту испаряется около одного миллиарда тонн воды и столько же выпадает обратно в виде осадков. Общий объем воды, поступающей из атмосферы на поверхность Земли, составляет за год около 500 тыс. км3 и таково же количество испаряющейся воды (рис. 57).

Рис. 57. Общая схема круговорота воды (по Ф. Рамаду, 1981)

Примечание: цифры - толщина слоя в метрах

 

При этом на континентах выпадает за год 109 тыс. км3, а испаряется 72 тыс. км3. Разница в 37 тыс. км3 и есть значение полного поверхностного речного стока. С поверхности Мирового океана испаряется воды больше (448 тыс. км3), чем выпадает осадков (441 тыс. км3). Разница восполняется стоком речных вод. «Лишняя» испарившаяся вода переносится с атмосферными потоками, выпадает в виде осадков над сушей и поступает обратно в океаны с поверхностным стоком и через грунтовые воды.

 

Вода, доступная для наземных организмов, составляет всего около сотой доли процента от ее общего количества, в то время как вода океанов могла бы покрыть всю планету слоем в 2700 м, вода рек и озер — в 0,4 м, вода атмосферного пара — в 3 см. Всей воды, содержащейся в телах живых организмов, хватило бы лишь на то, чтобы покрыть Землю слоем в 1 мм. Тем не менее количество воды, входящее в годовую продукцию фотосинтезирующих организмов, составляет, по данным академика А. П. Виноградова, более 830 млрд т. При этом лишь малая часть воды, проходящей через тела растений, разлагается в результате фотолиза на кислород, выделяемый в атмосферу, и водород, включаемый в состав органических веществ. Существенно больше растения расходуют на транспирацию, поглощая воду из почвы и испаряя в атмосферу надземными частями, прежде всего листьями. Циркуляция воды между Мировым океаном и сушей — важнейшее звено в поддержании жизни земных организмов и основное условие взаимодействия растений и животных с неживой материей. Одновременно вода в геологическом круговороте — величайшая трансформирующая сила, которая способствует постепенному разрушению литосферы, переносу ее составных частей в глубины морей и океанов.

Круговорот углеродагораздо в большей степени, чем круговорот воды, зависит от деятельности живых организмов. Диоксид углерода атмосферы ассимилируется наземными растениями в ходе фотосинтеза и включается в состав органических веществ (рис. 58). В процессе дыхания растений, животных и микроорганизмов углерод, содержащийся в организме, вновь переходит в атмосферу в виде СО2. Эти два процесса полностью уравновешены: лишь около 1 % углерода, усвоенного растениями, откладывается в виде торфа и удаляется из круговорота.

Рис. 58. Круговорот углерода (по И.П. Герасимову, 1980)

 

Удивительный факт: всего за 7 - 8 лет живые организмы пропускают через свои тела весь углерод, содержащийся в атмосфере. Под считано, что все зеленые растения Земли ежегодно извлекают из атмосферы до 300 млрд т диоксида углерода (86 млрд т углерода). При этом годичный круговорот массы углерода на суше определяется как массой составляющих его звеньев биосферы, так и количеством углерода, захватываемого каждым звеном. Согласно А.М. Алпатьеву (1983 г.): суммарный захват в результате фотосинтеза — 60 ·109 т/год; возврат от дыхания в процессе разложения органического вещества — 48 ·109 т/год; поступление в гумосферу и консервация в многолетних фитоценозах — 10 ·109т/год; поступление от сжигания топлива — около 5 ·109 т.

Намного большее количество углерода, чем в атмосфере, содержится в растворенном виде в морях и океанах (в виде СО2 угольной кислоты Н2СО3 и ее ионов). Этот углерод также доступен для усвоения живыми организмами и расходуется как в процессе фотосинтеза, так и на образование скелетов организмов, включающих карбонат кальция. Благодаря различным биологическим и химическим процессам между океанами и атмосферой идет интенсивный обмен углеродом, причем заметное количество его (3 млрд т) ежегодно выводится из круговорота и осаждается в виде малорастворимых карбонатов (солей угольной кислоты) в океанах.

Суммарное количество диоксида углерода в атмосфере планеты составляет не менее 2,3 ·102 т, в то время как содержание его в Мировом океане оценивается в 1,3 · 102 т. В литосфере в связанном состоянии находится 2 ·1017 т диоксида углерода. Значительное количество диоксида углерода содержится и в живом веществе биосферы (около 1,5 ·1012 т, т.е. почти столько, сколько во всей атмосфере). Диоксид углерода атмосферы и гидросферы обменивается и обновляется живыми организмами за 395 лет.

Круговорот азота.Хотя атмосфера содержит огромный запас азота (3,8 ·1015 т), Мировой океан — 2 ·1013 т, однако атмосферный азот в форме N2 не может быть напрямую использован большинством живых организмов.

При осуществлении круговорота соединений азота главную роль играют микроорганизмы: азотфиксаторы, нитрификаторы, денитрификаторы, которые способствуют биологической фиксации азота воздуха, т.е. переводят его в усвояемую для живых организмов форму. Азотфиксирующие организмы суши ежегодно улавливают около 4,4 ·1010 т азота, а в водной среде ежегодная биологическая фиксация его составляет 1,0 ·1015 т. В то же время содержание азота в наземных организмах составляет 1,22 ·1010 т, а в донных организмах — всего 0,025 ·1010 т (в 50 раз меньше). В целом в биосфере ежегодная фиксация азота из воздуха составляет в среднем 140 - 700 мг/м2. В основном это биологическая фиксация и лишь небольшое количество азота (в умеренных областях не более 35 мг/м2) фиксируется в результате электрических разрядов и фотохимических процессов.

Возвращение азота в атмосферу происходит вследствие денитрификации, которая осуществляется как при участии бактерий, так и в ходе химических реакций без участия организмов. Другие этапы круговорота также во многом зависят от деятельности бактерий, которые переводят азот из одних форм в другие. Важнейший из этапов — разложение тел отмерших организмов, в результате чего восполняется фонд неорганических соединений азота, доступных для использования растениями.

Круговорот азота в большинстве сообществ замкнутый, лишь небольшие количества этого элемента выносятся из наземных сообществ со стоком. Однако в масштабах всей биосферы реки выносят в океан около 30 млн т азота в год.

Круговорот кислородаявляется планетарным процессом, связывающим атмосферу и гидросферу с земной корой. Основными узловыми звеньями его являются: образование свободного кислорода при фотосинтезе, последующие затраты на дыхание, протекание реакций окисления органических остатков и неорганических веществ (например, сжигание топлива) и других химических преобразований. Они способствуют образованию таких окисленных соединений, как диоксид углерода, вода, после чего указанные вещества вовлекаются в новый цикл фотосинтетических превращений. Подсчитано, что весь кислород атмосферы проходит через живое вещество Земли за 2 тысячи лет.

Круговорот кислорода есть ярко выраженная активная геохимическая деятельность живого вещества, его ведущая роль в этом циклическом процессе. Ежегодное продуцирование кислорода зеленой растительностью планеты составляет около 300 ·109 т. При этом почти 3/4 этого количества выделяется растительностью суши и лишь немногим более четверти — фотосинтезирующими организмами Мирового океана. Кислорода в газовой оболочке Земли около 1,2 ·105 т; подсчитано, что такое количество фотосинтезирующие организмы могли бы выработать за 4 тыс. лет. В океане содержание свободного кислорода намного меньше: от 2,7 до 10,9 ·1012 т (согласно А. Д. Добровольскому, 1980 г.).

Помимо вышеупомянутых основных элементов, которые принимают участие в биологическом круговороте веществ, важную роль играют также калий, фосфор, сера, натрий и некоторые другие элементы, входящие в состав питания растений. В той или иной степени все элементы таблицы Д. И. Менделеева вовлечены в биологический круговорот.

Следует в то же время уточнить, что термин «круговорот веществ» употребляется в переносном смысле. Истинный круговорот совершают элементы: углерод, кислород, водород, азот и др. На каждом этапе круговорота они входят в состав различных соединений — простых (вода) или сложнейших (живой белок), а иногда выступают и в свободном состоянии. Поэтому более точно было бы говорить о круговороте элементов,а не о круговороте веществ.

Правомочен и другой вопрос: почему энергия течет в одном направлении, а вещество «вращается» на месте, ведь известно, что материя неотделима от энергии? Это кажущееся противоречие объясняется тем, что в определении «неотделимость» материя понимается в самом широком, философском смысле слова. Солнечная энергия приходит на Землю как бы в безвещественном виде, хотя в общем смысле она материальна (Солнце, излучая энергию, теряет многие миллиарды тонн своей массы). Попав на планету и приведя в движение, образно говоря, «жернова биосферы», энергия как бы стекает в форме теплового излучения. При этом тепло – непревратимая далее энергия – переходит с вовлеченного в круговорот вещества в окружающую среду и навсегда покидает живую оболочку планеты.

Биогеохимические функции живого вещества в биосфере развиваются в соответствии со следующими принципами:

1. Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному проявлению. Жизнь стремится заполнить в максимальном объёме пригодное для него пространство. Мы можем наблюдать это, например, на свежей насыпи, когда её осваивают растения. Когда сукцессия доходит до предельного насыщения ценоза, процесс замедляется, но продолжает идти в эволюционном плане.

2. Эволюция видов идёт в направлении, увеличивающем биогенную миграцию атомов в ней. Этот принцип важен для понимания истории жизни, а при переводе на язык практики он означает увеличение продуктивности растений и животных.

3. В течении всего геологического времени заселение планеты должно быть максимально возможным для всего живого вещества, которое существовало в тот или иной момент. Этот принцип важен для понимания современных проблем биосферы. Живое вещество, достигшее качественно новой высшей формы развития – формы человеческого общества, получило возможность существования на всём пространстве земной поверхности. При этом отношение человеческого общества с биосферой также должны перейти в новую форму, биосфера стала превращаться в ноосферу.

Вопросы для повторения

1.Что изучает наука экология?

2.Опишите сходство и отличие экосистемы и биогеоценоза.

3.Дайте определение биоценоза и биотопа.

4.Опишите схему биоценоза.

5.В чем заключается биотическая структура экосистем?

6.Как осуществляется поток энергии в экосистеме?

7.Как происходит поток солнечной энергии и ее трансформация на Земле?

8.Какие два типа пищевых цепей существует?

9.Опишите пастбищную пищевую цепь.

10.Опишите детритную пищевую цепь.

11.Опишите пирамиды численности, биомассы, энергии.

12.Какие экологические факторы существуют?

13.Опишите формы биотических отношений.

14.Опишите среды обитания живых организмов.

15.Что такое толерантность и каковы ее пределы?

16.В чем заключается закон минимума?

17.Что такое биосфера и какие компоненты в нее входят?

18.Опишите геохимические функции живого вещества.

19. В чем заклю1чается биогенная миграция атомов химических элементов?

20.Опишите структуру и основные циклы биохимических круговоротов.

21.Опишите круговорот воды.

22.Опишите круговорот углерода.

23.Опишите круговорот азота.

24.Опишите круговорот кислорода.

РАЗДЕЛ VIII

ЧЕЛОВЕК В БИОСФЕРЕ



/footer.php"; ?>