Развитие методов увеличения нефтеотдачи (МУН) в России

Введение

 

Первые результаты экспериментальных и промысловых исследований по применению поверхностно-активных веществ как добавок при заводнении нефтяных пластов опубликованы в США в 40-х, 50-х годах. В нашей стране эта проблема изучается более 30 лет и нашла свое отражение в работах П. А. Ребиндера, Г. А. Бабаляна, К. Ф. Жигача, М. М. Кусакова, Ш. К. Гиматудинова, Ф. И. Котяхова, В. В. Девликамова, И. Л. Мархасина, И. И. Кравченко, М. А. Гмана, А. Б. Тумасяна и др.

За это время разработаны в основном физико-химические и технологические основы метода, обоснованы приближенные критерии применимости ПАВ, произведены испытания метода в различных геолого-промысловых условиях.

Однако до настоящего времени многие аспекты этой проблемы до конца не изучены, требуют уточнения и дальнейшего исследования.

Механизм нефтеотдачи при воздействии водных растворов ПАВ на остаточную нефть в коллекторах различных типов сложен и многогранен, что предопределяет необходимость дальнейших экспериментальных и промысловых исследований на современной научной основе.

Актуальность проблемы. В XX веке произошло 15-ти кратное увеличение уровня потребления энергоресурсов, основную долю в которых составляют нефть и газ. В ближайшей перспективе доминирующее положение, как основного источника моторных топлив и сырья нефтехимических производств, сохранится за нефтью. Вместе с тем, опережающая добыча из активныхзапасов приведет к тому, что через 20 лет основной объем мировой добычи до 70 % будет обеспечиваться за счет трудноизвлекаемых запасов нефти. Уже сегодня в России на большинстве крупнейших нефтяных месторождений, вступивших в позднюю стадию разработки, доля трудноизвлекаемых запасов увеличилась более чем в 10 раз и продолжает увеличиваться.

Ограниченное применение современных технологий повышения нефтеотдачи приводит к тому, что коэффициент извлечения нефти (КИН) сокращается за десятилетие на 3-4 %. Вместе с тем, рост КИН только на 1 % дал бы России прирост годовой добычи в объеме не менее 10-20 млн т, что равносильно открытию нового месторождения. Потому уже сегодня необходимо интенсивно внедрять новые передовые технологии, направленные на вовлечение в разработку всех типов остаточных нефтей на месторождениях, вступивших в завершающую стадию эксплуатации, и эффективное освоение месторождений тяжелых высоковязких нефтей.

Поэтому исследование направлено на решение актуальной задачи —
разработку комплекса технологий для повышения нефтеотдачи пластов,
увеличения дебита добывающих скважин.

Объектом исследования является качественные показатели и эффективность вытеснения нефти раствором ПАВ.

Предметом исследования в данной работе является эффективность вытесняющей способности растворами ПАВ.

Цели и задачи исследований. Целью настоящих исследований является возможность повышения эффективности разработки месторождений высоковязких нефтей с применением поверхностно-активных веществ. Увеличение коэффициента извлечения высоковязкой нефти в условиях неоднородных по проницаемости пластов должно обеспечиваться за счет внедрения технологии закачки поверхностно-активных веществ (ПАВ).

В задачи исследований входило:

- изучить методы увеличения нефтеотдачи пластов терригенных пород;

- разработка новых технологий повышения нефтеотдачи за счет воздействия на пласт путем регулирования неионогенных ПАВ;

- изучить механизм вытеснения нефти из пористой среды с применением ПАВ

- определить поверхностное натяжение раствора поверхностно-активного вещества Неонол АФ9-12 разных концентраций;

- определить межфазное натяжение раствора поверхностно-активного вещества Неонол АФ9-12 разных концентраций.

Научная новизна. Проведено исследование качества неионогенного поверхностно-активного вещества (НПАВ) Неонол АФ9-12. Преимущество НПАВ заключается в его совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ.

Проведено исследование вытесняющей способности раствора поверхностно-активного вещества (ПАВ) АФ9-12.

 


Общие положения

Развитие методов увеличения нефтеотдачи (МУН) в России

 

При всех достоинствах освоенного промышленностью метода заводнения нефтяных залежей как метода наиболее полного извлечения нефти он, тем не менее, уже не обеспечивает необходимую конечную степень извлечения нефти из пластов, особенно в условиях неоднородных пористых сред и повышенной вязкости нефти, когда достигается относительно низкий охват пластов заводнением. После окончания разработки нефтяных месторождений в недрах остается от 40 до 80 % запасов нефти. Остаточная нефть в основном находится в таком состоянии, что доизвлечение ее обычными методами разработки затруднительно.

Как известно, различают остаточную нефть двух типов. Первый тип представляет собой не вовлеченную в процесс фильтрации нефть, сосредоточенную в застойных и недренируемых зонах и пропластках, не охваченных воздействием вытесняющих агентов. Причинами возникновения так называемых «целиков» нефти являются в первую очередь проницаемостная неоднородность пласта и низкий охват пласта заводнением и сеткой скважин. Промысловыми исследованиями установлено, что при различии проницаемостей двух пропластков, разделенных глинистой перемычкой, в 5 раз и более, вода практически не поступает в низкопроницаемые пропластки, в результате чего нефть остается не вовлеченной в разработку. Очевидно, что остаточная нефть этого типа по составу практически ничем не отличается от вытесняемой, поскольку она не взаимодействует с закачиваемыми флюидами.

Другой тип остаточной нефти представляет собой нефть, оставшуюся в частично промытых объемах пласта. Согласно характеру изменения фазовых проницаемостей, при высоких значениях водонасыщенности (большой степени выработки коллектора) нефть становится практически неподвижной. Для этого типа нефти большую роль играют взаимодействия в системе порода - нефть и закачиваемые флюиды, в частности, характер смачиваемости поверхности породы. Состав этого типа остаточной нефти отличается от состава нефти в начале разработки.

В работе [[1]] приводятся кривые вытеснения и диаграммы фазовых проницаемостей для нескольких месторождений Западной Сибири и Урало-Поволжья, сложенных карбонатными породами и песчаниками с различной смачиваемостью. Оказывается, состав и свойства остаточной нефти значительно зависят от характера смачиваемости поверхности пор пород.

При вытеснении нефти из гидрофильной пористой среды реализуется режим вытеснения, близкий к «поршневому», когда до 90 % нефти добывается в безводный период. В свою очередь, водный период для гидрофильных горных пород непродолжителен, и при закачке 0,5-1,5 поровых объемов воды достигается предельная обводненность добываемой продукции. Связанная вода образует пленку по всей поверхности породы, а остаточная нефть преимущественно сосредоточена в крупных порах. Фильтрация воды происходит в первую очередь по мелким и средним капиллярам, нефть из которых выталкивается в виде капель в более крупные капилляры. Остаточная нефтенасыщенность в этом случае представлена капиллярно-защемленной нефтью.

В гидрофобной пористой среде, напротив, вода сосредоточена в центре крупных пор, а нефть образует пленку на поверхности породы. При вытеснении вода формирует непрерывные каналы через крупные и средние капилляры, а толщина нефтяных пленок постепенно уменьшается. Процесс вытеснения для гидрофобных коллекторов характеризуется коротким безводным и продолжительным водным периодом, для достижения предельной обводненности требуется закачка 6-10 поровых объемов воды. Остаточная нефть сосредоточена в пленке на поверхности породы, а также в мелких и тупиковых порах.

Наибольшие коэффициенты вытеснения нефти, превышающие 70 %, достигаются в коллекторах с промежуточной смачиваемостью, когда мелкие поры гидрофильны, а крупные - гидрофобны. В этом случае одновременно происходит вытеснение капель нефти, сосредоточенной в гидрофильных порах, и отмыв пленочной нефти в гидрофобных. Из-за наличия гидрофобных участков образуется значительно меньше капиллярно-защемленной нефти.

Формирование остаточной нефти в промытых зонах определяется также свойствами самой нефти. Компонентный состав, дисперсное строение, содержание тяжелых фракций, наличие полярных асфальтено-смолистых веществ являются факторами, влияющими на структурно-механические свойства капель и пленок нефти и на межфазное натяжение. В частности, содержание и структура асфальтенов и смол имеют принципиальное значение для процесса вытеснения, поскольку именно в этих компонентах сосредоточена большая часть полярных и поверхностно-активных веществ, оказывающих стабилизирующее воздействие на коллоидные системы и усиливающих адсорбцию нефти на поверхности породы.

Специфичность свойств нефтей с повышенным содержанием асфальтенов, смол и парафина, значительные молекулярные массы, наличие гетероэлементов, парамагнетизм, полярность, выраженные коллоидно-дисперсные свойства, возможность образования прочной структуры в нефти и проявления тиксотропных свойств привели к обособлению самостоятельного раздела по гидродинамике процессов разработки неньютоновских нефтей. Среди исследователей, работающих в этой области, можно назвать А.Х. Мирзаджанзаде, В.В. Девликамова, А.Т. Горбунова, И.М. Аметова, З.А. Хабибуллина, А.Г. Ковалева, М.М. Кабирова и др.

Применение заводнения по традиционным технологиям предопределяет закономерное и неизбежное обводнение пластов по мере их выработки. Большинство нефтяных месторождений многопластовые. При этом пласты различаются между собой по коллекторским свойствам, и при совместной их разработке не обеспечивается равномерное вытеснение нефти по всей залежи, что обусловливает формирование остаточной нефти в малопроницаемых прослоях и зонах.

Приведенные факторы существенно влияют на полноту выработки запасов нефти, т.е. на конечный коэффициент нефтеотдачи пластов и на условия рентабельной эксплуатации нефтяных месторождений. Так, среднепроектная нефтеотдача по месторождениям России не превышает 40-43 %.

Другими словами, около 57-60 % начальных запасов нефти останутся не извлеченными. Несмотря на отдельные высокие показатели коэффициентов нефтеотдачи, разработка значительной части нефтяных залежей во всех странах мира с точки зрения полноты выработки запасов нефти характеризуется как неудовлетворительная. Например, в странах Латинской Америки и Юго-Восточной Азии коэффициент конечной нефтеотдачи составляет 24-27 %, в Иране - 16-17 %в США, Канаде, странах Западной Европы, Саудовской Аравии - 33-37 %.

Остаточные запасы (неизвлекаемые) нефти достигают в разных странах в среднем 55-85 % от первоначальных геологических запасов. Еще в более широком диапазоне (30-90 %) изменяются остаточные запасы по отдельным разрабатываемым месторождениям.

Острота проблемы увеличения нефтеотдачи пластов обусловлена тем обстоятельством, что при неуклонном спаде добычи нефти, истощении легко доступных активных запасов, расположенных в благоприятных природно-геологических условиях, в стране практически отсутствуют эффективные технологии по разработке трудноизвлекаемых запасов нефти.

Имеющиеся инженерные решения в этом направлении в основном носят поисковый характер и, как правило, имеют ряд серьезных ограничений.

Доля активных запасов в стране, оцененная рядом авторов, не превышает 50 % от общего объема остаточных запасов нефти. Следовательно, перспектива всей нефтедобывающей отрасли и научных изысканий, в частности, связана с совершенствованием разработки залежей с трудноизвлекаемыми запасами нефти.

Решение проблемы повышения эффективности разработки месторождений с трудноизвлекаемыми запасами связано с созданием новых и усовершенствованием существующих физико-химических методов, обеспечивающих более полное извлечение нефти и уменьшение объемов добычи попутной воды. В связи с этим важное значение приобретают методы регулирования разработки месторождений, вступающих в позднюю стадию, с высокой выработкой запасов и значительной обводненностью добываемой продукции.

В СССР и России начиная с 50-х годов стали настойчиво искать способы повышения эффективности заводнения нефтяных месторождений и увеличения конечной нефтеотдачи пластов.

В начале повышение эффективности заводнения осуществлялось в основном изменением схемы размещения водонагнетательных скважин (законтурное, осевое, блоковое, очаговое, избирательное, площадное и др.). Много внимания уделялось оптимизации давления нагнетания воды, выбору объектов разработки, повышению эффективности заводнения за счет рационального размещения добывающих скважин и др.

Результаты применения повышенных давлений на линии нагнетания, близких к горным, показали, что с увеличением перепада давления между пластом и скважиной происходит увеличение работающей толщины и коэффициента гидропроводности пласта. Среднее увеличение работающей толщины пласта при росте давления с 11 до 15 МПа составляет около 20 % [[2],[3]].

В начале 60-х годов стали усиленно изучать методы улучшения нефтевытесняющей способности воды за счет добавки различных активных агентов. В качестве таких агентов стали исследовать и применять углеводородный газ, полимеры, поверхностно-активные вещества, щелочи, кислоты и др. Эти методы были направлены на устранение или уменьшение отрицательного влияния капиллярных сил и сил адгезии, удерживающих нефть в заводненных объемах пластов.

К этим способам относятся применение слабоконцентрированных растворов водорастворимых ПАВ, щелочей и полимеров, циклическое воздействие на пласт, изменение направления потоков жидкостей и другие, увеличивающие нефтеотдачу на 2-8 % [


[4], [5], [6], [7], [8]]. К наиболее высокопотенциальным относятся методы вытеснения высоковязкой нефти паром, внутрипластовым горением и маловязкой нефти мицеллярными растворами, увеличивающими нефтеотдачу на 15-20 %. Эффективность метода вытеснения нефти углекислым и углеводородным газами, совмещенного с заводнением, занимает промежуточное положение (5-15%).

С ростом обводненности добываемой жидкости эффективность приведенных выше МУН снижается и при высокой обводненности они становятся малоэффективными. Поэтому масштабы их применения к 1992- 1993 гг. сократились.

Неоднородность продуктивных пластов по проницаемости, как было показано в предыдущих разделах, обусловливает то, что закачиваемая для ППД вода проходит по наиболее проницаемым пропласткам и слоям, оставляя не выработанными менее проницаемые прослои. Разработка продуктивных пластов системой скважин в условиях неоднородных пластов ведет к образованию застойных зон между скважинами (в том числе и в высокопродуктивных пластах), обусловливаемому гидродинамикой процессов вытеснения и распределением поля давлений в системе скважин. В таких измененных геолого-промысловых условиях разработки продуктивных пластов основным условием повышения эффективности их эксплуатации становится значительное снижение проницаемости обводненных наиболее проницаемых прослоев пласта с тем, чтобы направить закачиваемую воду в менее проницаемые малообводненные прослои, а также изменить распределение поля давлений с целью охвата заводнением застойных зон. В связи с этим были начаты и получили развитие лабораторные и промысловые исследования, направленные на разработку методов увеличения коэффициента охвата пластов воздействием закачиваемой водой.

Одной из первых технологий увеличения коэффициента охвата пласта воздействием на поздней стадии разработки явилась закачка в высокообводненные послойно-неоднородные пласты полимердисперсных систем (ПДС) [[9]], когда последовательно закачивали слабоконцентрированные растворы полимера и глинистой суспензии. В дальнейшем появилось большое количество технологий на основе использования полимеров, щелочей и ПАВ, основанных на осадко-гелеобразовании в высокообводненных пластах. Одним из ранних методов было применение полиакриламида со сшивателем (ацетат хрома) и простых эфиров целлюлозы. Закачка растворов этих реагентов и систем сравнительно больших объемов (200—500 м3 на 1 м толщины пласта) позволяет снизить проницаемость высокопродуктивных хорошо промытых прослоев пласта на достаточно большом расстоянии от нагнетательной скважины. Используя идею снижения проницаемости наиболее высокопроницаемых и хорошо промытых зон пласта путем создания в пористой среде неподвижных гелей и кольматирования осадкообразующими системами, начали прменять более доступные и менее дорогостоящие реагенты и их композиции (жидкий нефелин, алюмохлорид, щелочные стоки производства капролактана, древесную муку, отработанную щелочь, различные вторичные материальные ресурсы (BMP) и др.). Вслед за гелеосадкообразующими системами начали закачивать реагенты и их композиции, улучшающие нефтевытесняющие свойства воды. Все эти методы можно рассматривать как модификации способов, основанных на использовании осадкогелеобразующих и полимердисперсных систем.

Наряду с закачкой больших объемов растворов химреагентов в последние годы начали закачивать сравнительно небольшие объемы химических реагентов, которые ведут к так называемому направленному изменению свойств призабойной зоны пласта. Одним из таких методов является применение вязкоупругих составов, представляющих собой растворы полиакриламида с повышенным содержанием сшивателя и других химических продуктов.

При разработке монолитных пластов с резкой неоднородностью по проницаемости или при наличии в разрезе двух или более пластов (пропластков) получают применение биополимеры, гипан + жидкое стекло, управляемая гелевая система (жидкое стекло + соляная кислота), резиновая крошка, кремнийорганический продукт и другие.

В терригенных коллекторах, представленных большим количеством малопроницаемых пластов со значительным содержанием глинистых материалов, нефть вырабатывается слабо. Для их активного вовлечения в эксплуатацию разработаны различные методы: декольматация, разглинизация, воздействие на призабойную зону пласта различными волновыми и другими физическими методами в сочетании с применением химических реагентов, например, акустико-химическое воздействие (АХВ), комплексное химико-депрессионное воздействие (КХДВ). Все большее применение находят физические методы: термобароимплозионное воздействие (ТБИВ), депрессионная перфорация (ДП), сейсмоакустическое воздействие. Эти методы применяются в нагнетательных скважинах для увеличения приемистости и выравнивания профиля приемистости, а также увеличения дебитов добывающих скважин.

В последние годы получают развитие методы увеличения нефтеотдачи с применением микроорганизмов. Их перспектива связана, в первую очередь, с простотой реализации, минимальной капиталоемкостью и экологической безопасностью.

Биотехнологические процессы в области увеличения нефтеотдачи пластов можно использовать в двух главных направлениях. Во-первых, это производство на поверхности реагентов для закачки в пласты по известным технологиям. К этому классу веществ относятся биополимеры, диоксид углерода, некоторые ПАВ, растворители, эмульгаторы и т.д. И, во-вторых, использование для улучшения условий нефтевытеснения продуктов микробиологической жизнедеятельности, получаемых непосредственно в нефтеводогазосодержащих пластах.

В последние годы, благодаря созданию мощных источников вибрации и теоретической разработке основ процессов локализации и накопления энергии в заданных точках, стало возможным приступить к созданию технологий увеличения нефтеотдачи пластов, особенно истощенных в процессе разработки традиционными методами. Механизм воздействия механических волн на пластовые системы и технические средства для его реализации изучаются отечественными и зарубежными авторами.

Предварительные результаты промысловых исследований показывают, что имеющиеся технические средства позволяют осуществлять воздействие целенаправленно на определенные участки пласта, охватывая весь его объем от призабойных зон скважин до наиболее удаленных участков нефтяной залежи. Это возможно при одновременном использовании нескольких поверхностных и скважинных источников вибрации. Существуют источники, основанные на различных принципах создания вибрации и передачи ее земной толще. Группирование наземных и скважинных генераторов вибрации позволяет фокусировать колебания и за счет интерференции осуществлять мощное воздействие в той или иной точке пласта. При этом недостатки тех или других генераторов как бы устраняются, а преимущества используются более полно, о чем свидетельствует мировой опыт.

Как видно из приведенного краткого обзора, за последние годы исследователями в содружестве с промысловыми инженерами выполнены значительные работы по созданию новых технологий увеличения нефтеотдачи пластов, достаточно эффективные в условиях высокой обводненности нефтяных залежей.

Анализ результатов промысловых испытаний новых способов увеличения нефтеотдачи заводненных пластов показывает, что для залежей, находящихся на поздней стадии разработки, наиболее перспективными являются физико-химические, гидродинамические, волновые и микробиологические методы воздействия на пласт. Применение указанных методов воздействия на обводненные пласты может привести к повышению коэффициента вытеснения нефти из пористой среды или к увеличению коэффициента охвата воздействием закачиваемой водой, или одновременному увеличению как коэффициента вытеснения, так и охвата воздействием.

Таким образом, МУН пластов на поздней стадии заводнения залежей можно разделить на три группы:

- методы, направленные на увеличение коэффициента вытеснения нефти из пористой среды путем улучшения нефтеотмывающих свойств закачиваемой воды;

- методы, направленные на повышение охвата залежи воздействием воды;

- методы комплексного воздействия на залежь, позволяющие одновременно увеличить как коэффициент вытеснения нефти, так и охват пласта воздействием.

Методы увеличения коэффициента вытеснения нефти с использованием различных химических продуктов применяются на начальных стадиях разработки месторождений. Основное внимание уделяется увеличению коэффициента вытеснения с применением ПАВ, щелочей, кислот и растворителей. В данном направлении достигнуты определенные успехи [2].

При использовании второй группы методов, основанных на повышении фильтрационного сопротивления обводненных зон нефтеводонасыщенного коллектора, применяют полимеры, полимеры со сшивателями, полимердисперсные системы (ПДС), коллоидно-дисперсионные системы (КДС), волокнисто-дисперсные системы (ВДС) и другие осадко-гелеобразующие композиции. Эти методы наиболее широко начали применяться на поздней стадии разработки месторождений, что связано со снижением эффективности гидродинамических и ряда физико-химических методов на основе ПАВ, кислот и щелочей.

Комплексное воздействие на нефтеводонасыщенный коллектор достигается при использовании следующих технологий:

- закачка алкилированной серной кислоты (АСК);

- щелочно-силикатное и щелочно-полимерное заводнение, применение тринатрийфосфата;

- комбинированные технологии, основанные на закачке ПДС с поверхностно-активными веществами и щелочами, ПДС - СТА (стабилизированный тощий абсорбент) и др.;

- методы, основанные на совместной закачке полимеров, ПАВ, кислот, щелочей и растворителей;

- совместное использование физических методов (акустическое воздействие, вибровоздействие) и нефтевытесняющих агентов;

- гидродинамические МУН.

Исходя из этих соображений А.А. Газизов в соавторстве с А.Ш. Газизовым и С.Р. Смирновым предложили классификацию МУН, перспективных для применения в условиях высокой обводненности нефтяных залежей по механизму воздействия на залежь и остаточную нефть.

Классификация физических и физико-химических МУН, применяемых при высокой обводненности нефтяных залежей:

1. Увеличение коэффициента вытеснения:

- применение водорастворимых ПАВ;

- применение нефтерастворимых ПАВ;

- совместное применение водорастворимых и нефтерастворимых ПАВ;

- мицеллярные растворы;

- композиции углеводородов и ПАВ;

- щелочное заводнение.

2. Увеличение коэффициента охвата воздействием:

- применение полимеров и биополимеров;

- применение полимеров со сшивателями;

- вязкоупругие системы (ВУС);

- полимердисперсные, волокнисто-дисперсные и коллоидно-дисперсные системы(ПДС, ВДС, КДС и др.);

- гелеобразующие системы на основе кремнеорганических соединений, жидкого стекла, алюмохлорида, алюмосиликатов и др.

3. Методы комплексного воздействия:

- гидродинамические МУН;

- полимеры с щелочами;

- ПДС с ПАВ и ЩСПК;

- силикатно-щелочное воздействие;

- волновое воздействие;

- микробиологические МУН.

Краткие сведения о ПАВ

 

Под ПАВ понимают химические соединения, способные вследствие положительной адсорбции изменять фазовые и энергетические взаимодействия на различных поверхностях раздела жидкость - воздух, жидкость - твердое тело, нефть - вода. Поверхностная активность, которую в определенных условиях могут проявлять многие органические соединения, обусловлена как химическим строением, в частности, дифильностью (полярностью и поляризуемостью) их молекул, так и внешними условиями: характером среды и контактирующих фаз, концентрацией ПАВ, температурой [2, [10]. и др.].

Поверхностно-активные вещества - вещества с асимметричной молекулярной структурой, молекулы которых содержат один или несколько гидрофобных радикалов и одну или несколько гидрофильных групп. Такая структура обуславливает поверхностную активность молекул поверхностно-активных веществ, т.е. способность концентрироваться на межфазных поверхностях раздела, тем самым изменяя свойства системы [[11]].

Гидрофильной частью служит карбоксильная (COO), сульфатная (- OSO3) и сульфонатная (- SO3) группы, а также группы -СН2-СН2-О-СН2СН2 - или группы, содержащие азот. Гидрофобная часть состоит преимущественно из парафиновой цепи, прямой или разветвленной, из бензольного или нафталинового кольца с алкильными радикалами. Так как адсорбционная способность органических веществ растет с длиной углеводородных цепей, то к типичным, особенно эффективным ПАВ относятся более высокие члены гомологических рядов, содержащие 10-18 атомов углерода в молекулах [[12]]

Термины гидрофильный и гидрофобный характеризуют взаимодействие между поверхностно-активным веществом и водой. Но в настоящее время, когда, кроме водной среды, поверхностно-активные вещества применяются и в других средах, термины гидрофильный и гидрофобный, отражающие взаимодействие вещества только с водой, являются недостаточными. На IV Международном конгрессе по поверхностно-активным веществам были предложены обобщающие термины: эндофильный и экзофильный [[13]].

Эндофильность соответствует случаю, когда взаимодействие всей или части молекулы вещества с молекулами рассматриваемой фазы более сильное, чем взаимодействие между молекулами (или частью их) вещества. В противоположном случае имеет место экзофильность .

Обычно ПАВ представляют собой органические вещества, содержащие в молекуле углеводородный радикал и одну или несколько полярных групп.

Согласно ионной классификации Шварца и Перри, принятой в 1960 г. на III Международном конгрессе по ПАВ в Кельне, все ПАВ по химической природе делят на неионогенные, т. е. не диссоциирующие на ионы (НПАВ) в водных растворах, и ионогенные, которые в воде распадаются на ионы, как обычные электролиты [[14]]. Ионогенные ПАВ, в свою очередь, подразделяют на анионактивные (АПАВ), катионактивные (КПАВ), амфотерные и цвиттер-ионные [[15]].

Ионогенные ПАВ в водном растворе диссоциируют: анионные - с образованием отрицательно заряженных поверхностно-активных ионов; катионные - с образованием положительно заряженных поверхностно-активных ионов; амфолитные - с образованием соединений, которые в зависимости от характера среды обладают анионо- или катионоактивным характером. Неионные ПАВ в водном растворе не образуют ионов. Их растворимость обусловлена функциональными группами, имеющими сильное сродство к воде.

В отдельную группу выделяются высокомолекулярные (полимерные) ПАВ, состоящие из большого числа повторяющихся звеньев, каждое из которых имеет полярные и неполярные группы.

По растворимости в воде и маслах ПАВ подразделяют на три группы: водо-, водомасло- и маслорастворимые.

Водорастворимые ПАВ состоят из гидрофобных углеводородных радикалов и гидрофильных полярных групп, обеспечивающих растворимость всего соединения в воде. Характерная особенность этих ПАВ - их поверхностная активность на границе раздела вода - воздух.

Водомаслорастворимые ПАВ применяют в основном в системах нефть - вода. Гидрофильные группы в молекулах таких веществ обеспечивают их растворимость в воде, а достаточно длинные углеводородные радикалы - растворимость в углеводородах.

Маслорастворимые ПАВ не растворяются и не диссоциируют (или слабо диссоциируют) в водных растворах. Помимо разветвленной углеводородной части значительной молекулярной массы, обеспечивающей растворимость в углеводородах, маслорастворимые ПАВ часто содержат гидрофобные активные группы. Как правило, эти ПАВ слабо поверхностно-активны на границе раздела жидкость - воздух.

Вопрос о применении ПАВ для увеличения нефтеотдачи также решался неоднозначно на разных этапах развития внедрения МУН. После 80-х годов XX века, когда была подвергнута научному сомнению состоятельность заводнения с неионогенными ПАВ (НПАВ), потребовалось еще почти два десятилетия для того, чтобы доказать, что применение ПАВ не только один из наиболее эффективных методов повышения нефтеотдачи, но и то, что заводнение с НПАВ дает максимальный эффект, если внедряется с начала разработки. Этот вывод подтвержден результатами промысловых испытаний на опытных участках некоторых площадей Ромашкинского нефтяного месторождения [[16]].

Сегодня уже нет никаких сомнений в том, что применение ПАВ в различных технологиях повышения нефтеотдачи пластов является наиболее предпочтительным с точки зрения сохранения коллекторских свойств продуктивных пластов, влияния на процесс подготовки и транспортирования нефти. Это определяется многоплановым механизмом действия ПАВ [[17]]:

1. Добавка ПАВ в воду снижает межфазное натяжение воды на границе с нефтью. При низком межфазном натяжении капли нефти легко деформируются и фильтруются через сужения пор, что увеличивает скорость их перемещения, в пласте. К тому же при концентрации ПАВ выше ККМ (критической концентрации мицеллообразования) низкое значение межфазного натяжения на границе «раствор - нефть» будет способствовать солюбилизации нефтяных компонентов в растворе ПАВ.

2. Добавка ПАВ в воду за счет снижения поверхностного натяжения уменьшает краевые углы смачивания, т.е. увеличивает смачиваемость породы водой. Гидрофилизация в совокупности со снижением межфазного натяжения приводит к сильному ослаблению адгезионных взаимодействий нефти с поверхностью породы.

3. Водные растворы ПАВ проявляют моющее действие по отношению к нефти, покрывающей поверхность породы тонкой пленкой, способствуя разрыву пленки нефти. Адсорбируясь на поверхности раздела нефти с водой и вытесняя активные компоненты нефти, создающие на поверхности раздела адсорбционные слои с высокой прочностью, ПАВ облегчают деформацию менисков в порах - капиллярах пласта. Все это, увеличивает глубину и скорость капиллярного впитывания воды в нефтенасыщенную породу. Под действием ПАВ интенсивнее происходит диспергирование нефти в воде, причем ПАВ стабилизируют образующуюся дисперсию. Размеры нефтяных капель уменьшаются. Вероятность их коалесценции и прилипания к твердой поверхности снижается. Это ведет к значительному повышению относительной фазовой проницаемости пористой среды для нефти и воды.

4. Лучшее вытеснение нефти водой, содержащей ПАВ, связано также с сильным влиянием ПАВ на реологические свойства нефти. Введение ПАВ в нефть приводит к изолированию микрокристаллов парафинов и разрушению пространственной структуры, образуемой ими, а также к внедрению ПАВ в ассоциаты асфальто-смолистых веществ, следствием чего является снижение степени агрегирования АСВ (асфальто-смолистых веществ) в растворе низкомолекулярных углеводородов и уменьшение вязкости нефти.

Начало применения ПАВ в нефтепромысловой практике относится к 50-ым годом XX века [[18], [19], [20], [21], [22], [23]].

За прошедшие 50 лет сложился широкий спектр ПАВ, применяемых для увеличения нефтеотдачи: сульфонолы [[24],[25]]; сульфоэтоксилаты ОЭАФ [21], алкилсульфоиаты, реагенты ряда ОП (ОП-4, ОП-10) [6, [26]], оксиэтилированные алкилфенолы (неонолы АФ9-4, АФ9-6, АФ9-10, АФ9-12) [[27], [28],[29]] и др. Причем первоначально указанные ПАВ использовались индивидуально, а теперь преобладает применение композиций ПАВ, обладающих синергическим эффектом совместного действия АПАВ и НПАВ, таких как композиция «Сепавет» фирмы ВА8Р [21], маслорастворимые и водорастворимые ПАВ «Нефтенол» [[30]], технология «СНО АН МФК» [[31]]. Также известны технология на основе композиции Нефтенола НЗ «ЗАО Химеко-ГАНГ» [[32]], композиция СНПХ-95 ОАО «НИИНефтепромхнм» [[33], [34]) и т.п. Технологии данного типа осуществляются путем использования составов, содержащих разные классы ПАВ, которые при введении в воду позволяют снизить межфазное натяжение на границе, обладают высокой солюбилизирующей способностью, образуют на границе с углеводородом микроэмульсионную фазу и не дают устойчивых, плохо разрушающихся эмульсий [[35], [36], [37], [38], [39], [40], [41], [42], [43], [44],[45]].

Первые попытки применения эмульсий в нефтяной промышленности были предприняты в начале 70-х годов [[46]], но из-за дороговизны реагентов и ограниченного ассортимента ПАВ эмульсионные системы нашли ограниченное применение [31]. Известно множество составов эмульсионных систем, однако в основном они отличаются только классом и концентрацией поверхностно-активных веществ (ПАВ). Использовавшиеся ранее ПАВ-стабилизаторы эмульсий были представлены ионогенным классом, применение которого ограничивалось минерализацией воды, используемой для приготовления растворов, а также минерализацией пластовой воды [[47],[48]]. К ПАВ этого класса можно отнести нефтяные сульфонаты. Для устранения отрицательного влияния минерализации воды на устойчивость эмульсионных составов в качестве эмульгаторов и стабилизаторов эмульсий было предложено использование неионогеиных ПАВ, оксиэтилнрованных продуктов, таких как оксиэтшшрованные алкилфенолы (неонолы), окспэтилированиые высшие спирты [[49],[50]] и др.

Примером такой композиции является разработка фирмы «Хёхст» -«Додифлад V-3100» [[51]]. В эмульсионных составах в качестве углеводородной дисперсионной среды, как правило, используются легкие (гексановая. дизельная) фракции нефти. Вместе с тем, содержание водной фазы в этих системах было незначительным, поэтому вязкость полученных эмульсионных систем также была ограниченна.

Разработанные технологии эмульсионного воздействия, как правило, рекомендцются для применения - в песчанистых пластах, где обычное заводнение было успешным, но уже исчерпало себя; или на карбонатных залежах при использовании в качестве эмульгаторов ПАВ неионогенного класса. Однако все разработанные составы имеют ряд ограничений [[52], [53], [54], [55], [56],[57]] по плотности и вязкости нефти (малая и средняя), по проницаемости коллектора (средняя и высокая) и по достаточно высокой остаточной нефтенасыщенности (не менее 25-30 %). Были проведены единичные испытания эмульсионного метода на коллекторах, представленных тяжелыми нефтями, где также наблюдается прирост нефтеизвлечения, хотя для этого необходим больший перепад давления при закачке.

Наиболее широкое применение в технологии повышения нефтеотдачи нашли неионогенные поверхностно-активные вещества (НПАВ).

Этот вид ПАВ насчитывает более 50 веществ различных групп [[58]]. Среди них наибольшее распространение получили оксиэтилированные изононилфенолы типов ОП-10, АФ9-4, АФ9-6, АФ9-10, АФ9-12, в основном из-за больших объемов их промышленного производства.

По мнению многих исследователей, преимущество НПАВ заключается в их совместимости с водами высокой минерализации и значительно меньшей адсорбции по сравнению с ионогенными ПАВ [[59], [60], [61]]. Однако многолетний опыт применения индивидуальных ПАВ типа ОП-10 для увеличения нефтеотдачи не дал однозначных результатов [[62], [63], [64], [65], [66] и др.]. Об эффективности применения НПАВ, как метода увеличения нефтеотдачи, существуют различные мнения, как положительные, так и отрицательные.

С позиций сегодняшнего дня это можно объяснить слабой поверхностной активностью на границе раздела нефть - вода, незначительными нефтеотмывающими свойствами, большими потерями в пласте, неопределенностями в оценке технологической эффективности метода по промысловым данным [66, [67]]. Кроме того, метод далек от универсальности. Он может эффективно использоваться в строго определенных геолого-физических условиях, о чем свидетельствует многолетний опыт (с 1971 г.) применения ПАВ в Татарстане для повышения нефтеотдачи пластов залежей терригенного девона. По объемам внедрения метод заводнения с применением ПАВ в объединении Татнефть занимает второе место после закачки серной кислоты. На месторождениях Татарстана закачано около 60 тыс. т водорастворимых и около 20 тыс. т маслорастворимых ПАВ. Только на Ромашкинском месторождении за счет закачки ПАВ добыто более 3 млн. т нефти, или 47,5 т на 1 т ПАВ [[68]].

Многочисленные экспериментальные исследования, выполненные в ТатНИПИнефти, показали, что применение концентрированных растворов ПАВ в условиях первичного вытеснения нефти из моделей терригенных пород существенно улучшает процесс вытеснения нефти. Максимальный прирост коэффициента вытеснения по сравнению с водой составил 2,2-2,7 % [68]. Несколько большее значение прироста коэффициента вытеснения, равное 3,5-4 %, было получено при использовании моделей малопроницаемых пористых сред.

В экспериментах по вытеснению остаточной нефти из моделей терригенных пород с использованием дисперсий маслорастворимых ПАВ, выполненных в УНИ и ВНИПИнефтепромхим, была показана возможность существенного улучшения доотмыва остаточной нефти после обычного заводнения. Промысловые испытания этой технологии на опытном участке Ташлиярской площади Ромашкинского месторождения позволили дополнительно получить 24 тыс. т нефти, или 60 т на 1 т ПАВ. По этой технологии для довытеснения остаточной нефти была закачана водная дисперсия маслорастворимого ПАВ АФ9-6. Приготовленная на поверхности водная дисперсия с концентрацией до 10 % представляла собой микроэмульсию прямого типа. Средняя обводненность добываемой жидкости из скважин опытных участков составляла 83-95 %. В других геолого-физических условиях, например Башкирии, промысловый эксперимент, проводимый на Арланском месторождении с 1967 г. по технологии долговременного дозирования низкоконцентрированных растворов ОП-10, не дал ожидаемых положительных результатов. Несмотря на то, что в пласты опытного объекта было закачано более одного порового объема 0,05 % раствора ОП-10, систематический контроль за содержанием ПАВ в продукции добывающих скважин не выявил заметных концентраций ПАВ. Значительные потери активного вещества в пласте многие авторы связывают с адсорбционными и деструкционными процессами, происходящими после закачки ПАВ в пласт [[69], [70], [71], [72], [73], [74], [75], [76]].