Двухтактный транзисторный инвертор с самовозбуждением

Двухтактная схема инвертора с самовозбуждением (рисунок 6.4, а) состоит из двух транзисторов VT1и VT2, а также из трансформатора Т с тремя обмотками, сердечник которого выполнен из материала с прямоугольной петлей гистерезиса. Отрицательное смещение на базы транзисторов подается со средней точки делителя напряжения R1R2, к которому подключено входное напряжение U0. Сопротив­ление резистора R1много меньше, чем у резистора R2, поэтому между базой и эмиттером каждого транзистора действует неболь­шое напряжение, приходящееся на резистор R1и составляющее десятые доли вольта. Конденсатор С облегчает запуск инвертора. В момент включения питания ток заряда конденсатора проходит через резистор R1. При этом на нем кратковременно увеличивается падение напряжения и на базах транзисторов возрастает отрица­тельный потенциал.

После включения инвертора в первый момент благодаря нали­чию отрицательного смещения на базах открываются оба транзис­тора. Параметры транзисторов не могут быть абсолютно одина­ковыми, поэтому коллекторные токи будут несколько отличаться друг от друга. Предположим, что ток транзистора VT1превышает ток транзистора VT2, что приведет к тому, что в трансформаторе будет преобладать магнитный поток, возникающий за счет тока iк1. Благодаря этому э.д.с., возникшие в других обмотках за счет взаимоиндукции, будут иметь полярность, указанную на схеме. На базе транзистора VT1 появится отрицательный потенциал относи­тельно эмиттера, а на базе VT2 - положительный. При этом тран­зистор VT1будет продолжать открываться и ток iк1 увеличиваться, а транзистор VТ2начнет закрываться. Этот процесс нарастает лавинообразно. К моменту времени t1транзистор VТ1 открыт и находится в режиме насыщения (рисунок 6.4, в и г), а транзистор VТ2закрыт и находится в режиме отсечки (рисунок 6.4, д). С момента насыщения транзистора VТ1 к обмотке I’ трансформатора будет приложено почти все напряжение источника постоянного тока U1 ≈ U0 (рисунок - 6.4, д). На этом заканчивается процесс включения инвертора.

Рисунок 6.4 – Схема двухтактного транзисторного инвертора с самовозбуждением (а),

характеристика намагничивания сердечника трансформатора (б);

временные диаграммы напряжений и токов (в-е)

Дальше начинается линейный процесс. Индукция в сердечнике трансформатора нарастает линейно со скоростью dB/dt = (U0 - UKH)/Sω, где UKH - напряжение коллектор - эмиттер насыщенного транзистора; S -площадь поперечного сечения сердечника w -число витков обмотки I’. Коллекторный ток транзистора iK = i`H + i`0 + iμ; где i’H-ток нагрузки, приведенный к первичной обмотке; i’0- ток, нейтрализующий намагничивание, создаваемое током отсечки запертого транзистора IK0; iμ - ток намагничивания.

Ток намагничивания и нейтрализации на этом этапе очень малы. Линейный процесс продолжается до момента времени t2, ког­да индукция в сердечнике достигнет индукции насыщения BS(рисунок 6.4,6). С этого момента начинается коммутационный процесс. Ток коллектора нарастает из-за увеличения тока намагничивания iμ. При этом степень насыщения транзистора падает. Заряд неоснов­ных носителей в его базе уменьшается. К моменту времени t3 коллекторный ток транзистора возрастает настолько, что он выхо­дит из насыщения. Напряжение на транзисторе начинает возрастать (рисунок 6.4,5), что приведет к уменьшению напряжения на первичной обмотке трансформатора и положит начало закрывания транзисто­ра VT1. При запирании транзистора VT1сердечник трансформатора Т начинает перемагничиваться, что приводит к появлению на обмотках трансформатора напряжений, противоположных по знаку тем, которые были ранее (см. рисунок 6.4,а). Процесс развивается лавинообразно и к моменту времени t4 приводит к запиранию транзистора VT1и открыванию транзистора VT2.

После переключения транзисторов вновь начинается линейный процесс, который сопровождается изменением индукции от +ВS до -ВS. В дальнейшем процессы повторяются. При этом импульсы напряжения на вторичной обмотке трансформатора и на нагрузке будут иметь форму, близкую к прямоугольной (рисунок 6.4, е).

На коллекторном переходе закрытого транзистора действует сумма напряжений источника постоянного тока U0 и э.д.с., индуци­рованная в коллекторной обмотке закрытого транзистора (см. рисунок 6.4, а), поэтому для успешной работы в инверторе транзисторы должны иметь допустимое напряжение Uкэбольше 2U0. Частота колебаний инвертора с насыщающимся трансформатором в основ­ном определяется конструктивными данными трансформатора и напряжением источника постоянного тока f = U0/(4ω·S·BS). Опти­мальная частота колебаний лежит в диапазоне 400-600 Гц. При работе инвертора на повышенных частотах следует учитывать длительность коммутационных процессов, которые зависят от инерционности транзисторов и схемы инвертора. Для приведенной схемы она практически равна времени рассасывания заряда неос­новных носителей в базах транзисторов. Особенностью схемы инвертора является наличие значительных выбросов коллекторных токов транзисторов, возникающих в процессе коммутации. Данный преобразователь применяют при мощностях не более 50-100 Вт, обеспечивая к.п.д. порядка 70-80%. При больших мощностях существенно увеличиваются потери в трансформаторе. Недостат­ком преобразователя является сильное влияние тока и характера нагрузки на частоту, форму и выходное напряжение.



php"; ?>