Експериментальні методи реєстрації іонізуючих випромінювань. Поглинена доза випромінювання, її біологічна дія. Способи захисту від випромінювання

Виявлення радіоактивних речовин та іонізуючих (радіоактивних) випромінювань (нейтронів, гамма-променів, бета- і альфа-частинок), ґрунтується на здатності цих випромінювань іонізувати речовину середовища, в якій вони поширюються.

Під час іонізації відбуваються хімічні та фізичні зміни у речовині, які можна виявити і виміряти. Іонізація середовища призводить до: засвічування фотопластинок і фотопаперу, зміни кольору фарбування, прозорості, опору деяких хімічних розчинів, зміни електропровідності речовин (газів, рідин, твердих матеріалів), люмінесценції (світіння) деяких речовин.

В основі роботи дозиметричних і радіометричних приладів застосовують такі методи індикації: фотографічний, сцинтиляційний, хімічний, іонізаційний, калориметричний, нейтронно-активізаційний.

Крім цього, дози можна визначати за допомогою біологічного і розрахункового методів.

Фотографічний метод оснований на зміні ступеня почорніння фотоемульсії під впливом радіоактивних випромінювань. Гамма-промені, впливаючи на молекули бромистого срібла, яке знаходиться в фотоемульсії, призводять до розпаду і утворення срібла і брому. Кристали срібла спричиняють почорніння фотопластин чи фотопаперу під час проявлення. Одержану дозу випромінювання (експозиційну або поглинуту) можна визначити, порівнюючи почорніння плівки паперу з еталоном.

Сцинтиляційний метод полягає в тому, що під впливом радіоактивних випромінювань деякі речовини (сірчистий цинк, йодистий натрій) світяться. Спалахи світла, які виникають, реєструються, і фотоелектронним посилювачем перетворюються на електричний струм. Вимірюваний анодний струм і швидкість рахунку (рахунковий режим) пропорційні рівням радіації.

Хімічний метод базується на властивості деяких хімічних речовин під впливом радіоактивних випромінювань внаслідок окислювальних або відновних реакцій змінювати свою структуру або колір. Так, хлороформ у воді під час опромінення розкладається з утворенням соляної кислоти, яка вступає в кольорову реакцію з барвником, доданим до хлороформу. У кислому середовищі двовалентне залізо окислюється в тривалентне під впливом вільних радикалів Н02 і ОН, які утворюються у воді при її опроміненні. Тривалентне залізо з барвником дає кольорову реакцію. Інтенсивність зміни кольору індикатора залежить від кількості соляної кислоти, яка утворилася під впливом радіоактивного випромінювання, а її кількість пропорційна дозі радіоактивного випромінювання. За інтенсивністю утвореного забарвлення, яке є еталоном, визначають дозу радіоактивних випромінювань. За цим методом працюють хімічні дозиметри ДП-20 і ДП-70 М.

Іонізаційний метод полягає в тому, що під впливом радіоактивних випромінювань в ізольованому об'ємі відбувається іонізація газу й електрично нейтральні атоми (молекули) газу розділяються на позитивні й негативні іони. Якщо в цьому об'ємі помістити два електроди і створити електричне поле, то під дією сил електричного поля електрони з від'ємним зарядом будуть переміщуватися до анода, а позитивно заряджені іони — до катода, тобто між електродами проходитиме електричний струм, названий іонізуючим струмом і можна робити висновки про інтенсивність іонізаційних випромінювань. Зі збільшенням інтенсивності, а відповідно й іонізаційної здатності радіоактивних випромінювань, збільшиться і сила іонізуючого струму.

Калориметричний метод базується на зміні кількості теплоти, яка виділяється в детекторі поглинання енергії іонізуючих випромінювань.

Нейтронно-активаційний метод зручний під час оцінювання доз в аварійних ситуаціях, коли можливе короткочасне опромінення великими потоками нейтронів. За цим методом вимірюють наведену активність, і в деяких випадках він є єдино можливим у реєстрації" особливо слабких нейтронних потоків, тому, що наведена ними активність мала для надійних вимірювань звичайними методами.

Біологічний метод дозиметрії ґрунтується на використанні властивостей випромінювань, які впливають на біологічні об'єкти. Дозу оцінюють за рівнем летальності тварин, ступенем лейкопенії, кількістю хромосомних аберацій, зміною забарвлення і гіперемії шкіри, випаданню волосся, появою в сечі дезоксицитидину. Цей метод не дуже точний і менш чутливий, ніж фізичний.

Розрахунковий метод визначення дози опромінення передбачає застосування математичних розрахунків. Для визначення дози радіонуклідів, які потрапили в організм, цей метод є єдиним.

На основі іонізаційного методу розроблені прилади, які мають однакову будову і складаються зі сприймаючого пристрою (іонізаційної камери або газорозрядного лічильника), підсилювача іонізуючого струму (електричної схеми), реєстраційного пристрою (мікроам-перметр) і джерела живлення (сухі елементи або акумулятори).

Сприймаючий пристрій призначений для перетворення енергії радіоактивних випромінювань в електричну.

В основу роботи дозиметричних приладів покладено принцип іонізації газів.

Як відомо, гази є провідниками електричного струму. Під впливом радіоактивних випромінювань, вони в результаті іонізації починають проводити струм. На цій властивості газів і ґрунтується робота сприймаючого пристрою дозиметричних приладів — іонізаційної камери та газорозрядного лічильника.

Іонізаційна камера має вигляд прямокутної коробки або трубки, виготовленої з алюмінію або пластмаси. В останньому випадку внутрішню поверхню стінок вкривають струмопровідним матеріалом. У середині коробки або трубки розміщується графітовий чи алюмінієвий стержень.

Отже, в іонізаційній камері є два електроди: до стінки камери підключається позитивна напруга від джерел живлення, яка виконує роль позитивного електрода, а до графітового чи алюмінієвого стержня, який виконує роль негативного електрода і розміщений у середині камери — негативна напруга. Простір у камері між електродами заповнений повітрям. Сухе повітря, що заповнює іонізаційну камеру, є добрим ізолятором. Ось чому у звичайних умовах електричний струм через камеру не проходить. У зоні радіоактивних забруднень у камеру проникають гамма-випромінювання і бета-частинки, які спричиняють іонізацію повітря. Іони, що утворилися під дією електричного поля, починають спрямовано рухатися, а саме: негативні іони рухаються до позитивного електрода (анода), а позитивні іони — до негативного електрода (катода). Таким чином, у ланцюгу камери виникає іонізуючий струм.

Проте безпосередньо виміряти силу іонізуючого струму неможливо, бо вона дуже мала. У зв'язку з цим для посилення іонізуючого струму застосовують електричні підсилювачі, після чого струм проходить через вимірювальний прилад, шкала якого проградуйована у відповідних одиницях вимірювання.

Газорозрядний лічильник призначений для вимірювання малої інтенсивності у десятки тисяч разів меншої тієї, яку можна виміряти іонізаційною камерою. Через це газорозрядні лічильники застосовуються у приладах для вимірювання рівня радіації на місцевості (рентгенметрах), у приладах (радіометрах) для вимірювання ступеня забрудненості різних предметів, продуктів, урожаю, кормів альфа-, бета- і гамма-активними речовинами.

Газорозрядні лічильники відрізняються від іонізаційних камер як конструктивним оформленням, так і характером іонізації, що відбувається в них. Лічильник складається з тонкостінної металевої (з нержавіючої сталі) трубки довжиною 10—15 см і діаметром 1—2 см. По осі трубки протягнуто дуже тонку вольфрамову нитку. До електродів лічильника, тобто до вольфрамової нитки і стінок трубки, підведено напругу від джерела живлення. Простір між стінками трубки і металевою ниткою заповнений інертним газом (неоном, аргоном або їх сумішшю), з невеликою добавкою галогенів (хлору, брому).

Тиск газового наповнення в лічильнику понижений — близько 1330 Па (10 мм рт. ст.).

Іонізаційна частинка, потрапляючи всередину лічильника, створює принаймні одну пару іонів: позитивний іон і електрон. Під дією електричного поля позитивний іон рухається до катода (стінки трубки), а електрон — до анода (нитки лічильника). Рух іонів спричиняє в ланцюгу лічильника стрибок (імпульс) струму, який після посилення може бути зареєстрований вимірювальним приладом (мікро-амперметром).

Реєструючи кількість імпульсів струму, які виникають за одиницю часу, можна знайти інтенсивність радіоактивних випромінювань.

Проходження в газовому лічильнику імпульсів напруги можна почути в головних телефонах у вигляді клацань, які при сильному забрудненні РР поверхні переходять у шум (тріск).

Підсилювач іонізуючого струму призначений для посилення слабких сигналів, які виробляються сприймаючим пристроєм, до рівня, необхідного для роботи реєстраційного (вимірювального) пристрою. Як підсилювач застосовують електрометричні лампи.

Реєстраційний пристрій призначений для вимірювання сигналів, які виробляються сприймаючим пристроєм. Шкали приладів градуйовані безпосередньо в одиницях тих величин, для вимірювання яких призначений прилад (відповідної характеристики радіоактивних випромінювань).

Радіоактивні випромінювання, незважаючи на їхнє величезне значення, є одним з видів іонізуючих випромінювань. Радіонукліди утворюють випромінювання в момент перетворення одних атомних ядер в інші. Вони характеризуються періодом напіврозпаду (від секунд до млн років), активністю (числом радіоактивних перетворень за одиницю часу), що характеризує їх іонізуючу спроможність. Активність у міжнародній системі (СВ) вимірюється в беккерелях (Бк), а позасистемною одиницею є кюрі (Кі). Один Кі = 37 х 109Бк. Міра дії іонізуючого випромінювання в будь-якому середовищі залежить від енергії випромінювання й оцінюється дозою іонізуючого випромінювання. Останнє визначається для повітря, речовини і біологічної тканини. Відповідно розрізняють * експозиційну, * поглинену та * еквівалентну дози іонізуючого випромінювання.

Експозиційна доза характеризує іонізуючу спроможність випромі­нювання в повітрі, вимірюється в кулонах на 1 кг (Кл/кг); позасистемна одиниця — рентген (Р); 1 Кл/кг — 3,88 х 103Р. За експозиційною дозою можна визначити потенційні можливості іонізуючого випромінювання.

Поглинута доза характеризує енергію іонізуючого випромінювання, що поглинається одиницею маси опроміненої речовини. Вона вимі­рюється в. греях Гр (1 Гр-1 Дж/кг). Застосовується і позасистемна одиниця рад (1 рад — 0,01Гр= 0,01 Дж/кг).

Доза, яку одержує людина, залежить від виду випромінювання, енергії, щільності потоку і тривалості впливу. Проте поглинута доза іонізуючого випромінювання не враховує того, що вплив на біологічний об'єкт однієї і тієї ж дози різних видів випромінювань неоднаковий. Щоб врахувати цей ефекту введено поняття еквівалентної дози.

Еквівалентна доза є мірою біологічного впливу випромінювання на конкретну людину, тобто індивідуальним критерієм небезпеки, зумовленим іонізуючим випромінюванням. За одиницю вимірювання еквівалентної дози прийнятий зіверт (Зв). Зіверт дорівнює поглинутій дозі в 1 Дж/кг (для рентгенівського та а, b випромінювань). Позасистемною одиницею служить бер (біологічний еквівалент рада). 1 бер = 0,01 Зв.

Питання захисту людини від негативного впливу іонізуючого випромінювання постали майже одночасно з відкриттям рентгенівського випромінювання і радіоактивного розпаду. Це зумовлено такими факторами: по-перше, надзвичайно швидким розвитком застосування відкритих випромінювань в науці та на практиці, і, по-друге, виявленням негативного впливу випро­мінювання на організм.

Заходи радіаційної безпеки використовуються на підприємствах і, як правило, потребують проведення цілого комплексу різноманітних захисних заходів, що залежать від конкретних умов роботи з джерелами іонізуючих випромінювань і, передусім, від типу джерела випромінювання.

Закритими називаються будь-які джерела іонізуючого випромі­нювання, устрій яких виключає проникнення радіоактивних речовин у навколишнє середовище при передбачених умовах їхньої експлуатації і зносу.

Це — гамма-установки різноманітного призначення; нейтронні, бета-і гамма-випромінювачі; рентгенівські апарати і прискорювачі заряджених часток. При роботі з закритими джерелами іонізуючого випромінювання персонал може зазнавати тільки зовнішнього опромінення.

Захисні заходи, що дозволяють забезпечити умови радіаційної без­пеки при застосуванні закритих джерел, основані на знанні законів поширення іонізуючих випромінювань і характеру їхньої взаємодії з речовиною. Головні з них такі:

· доза зовнішнього опромінення пропорційна інтенсивності випромінювання і часу впливу;

· інтенсивність випромінювання від точкового джерела пропорційна кількості квантів або часток, що виникають у ньому за одиницю часу, і обернено Пропорційна квадрату відстані;

· інтенсивність випромінювання може бути зменшена за допомогою екранів.

З цих закономірностей випливають основні принципи забезпечення радіаційної безпеки:

1) зменшення потужності джерел до мінімальних розмірів («захист кількістю»);

2) скорочення часу роботи з джерелом («захист часом»);

3) збільшення відстані від джерел до людей («захист відстанню»);

4) екранування джерел випромінювання матеріалами, що поглинають іонізуюче випромінювання («захист екраном»).

Найкращими для захисту від рентгенівського і гамма-випромінювання є свинець і уран. Проте, з огляду на високу вартість свинцю й урану, Можуть застосовуватися екрани з більш легких матеріалів — просвинцьованого скла, заліза, бетону, залізобетону і навіть води. У цьому випадку, природно, еквівалентна товща екрану значно збільшується.

Для захисту від бета-потоків доцільно застосовувати екрани, які ви­готовлені з матеріалів з малим атомним числом. У цьому випадку вихід гальмівного випромінювання невеликий. Звичайно як екрани для захисту від бета-випромінювань використовують органічне скло, пластмасу, алюміній.

Відкритими називаються такі джерела іонізуючого випромінювання, при використанні яких можливе потрапляння радіоактивних речовин у навколишнє середовище.

При цьому може відбуватися не тільки зовнішнє, але і додаткове внутрішнє опромінення персоналу. Це може відбутися при надходженні радіоактивних ізотопів у навколишнє робоче середовище у вигляді газів, аерозолів, а також твердих і рідких радіоактивних відходів: Джерелами аерозолів можуть бути не тільки виконувані виробничі операції, але і забруднені радіоактивними речовинами робочі поверхні, спецодяг і взуття.

Основні принципи захисту:

· використання принципів захисту, що застосовуються при роботі з джерелами випромінювання у закритому виді;

· герметизація виробничого устаткування з метою ізоляції процесів, що можуть стати джерелами надходження радіоактивних речовин у зовнішнє середовище;

· заходи планувального характеру;

· застосування санітарно-технічних засобів і устаткування, викори­стання спеціальних захисних матеріалів;

· використання засобів індивідуального захисту і санітарної обробки персоналу;

· дотримання правил особистої гігієни;

· очищення від радіоактивних забруднень поверхонь будівельних конструкцій, апаратури і засобів індивідуального захисту;

· використання радіопротекторів (біологічний захист).

Радіоактивне забруднення спецодягу, засобів індивідуального захи­сту та шкіри персоналу не повинно перевищувати припустимих рівнів, передбачених Нормами радіаційної безпеки НРБУ-97.

У випадку забруднення радіоактивними речовинами особистий одяг і взуття повинні пройти дезактивацію під контролем служби радіаційної безпеки, а у випадку неможливості дезактивації їх слід захоронити як радіоактивні відходи.

Рентгенорадіологічні процедури належать до найбільш ефективних методів діагностики захворювань людини. Це визначає подальше зростання застосування рентгене- і радіологічних процедур або ви­користання їх у ширших масштабах. Проте інтереси безпеки пацієнтів зобов'язують прагнути до максимально можливого зниження рівнів опромінення, оскільки вплив іонізуючого випромінювання в будь-якій дозі поєднаний з додатковим, відмінним від нуля ризиком виникнення віддалених ,стохастичних ефектів. У даний час з метою зниження індивідуальних і колективних доз опромінення населення за рахунок діагностики широко застосовуються організаційні і технічні заходи:

• як виняток необгрунтовані (тобто без доведень) дослідження;

• зміна структури досліджень на користь тих, що дають менше дозове навантаження;

• впровадження нової апаратури, оснащеної сучасною електронною технікою посиленого візуального зображення;

• застосування екранів для захисту ділянок тіла, що підлягають дос­лідженню, тощо.