Принцип действия и схемы включения транзистора

Наличие трех выводов у транзистора позволяет применять три различных схемы включения транзистора в электрическую цепь. Эти схемы показаны на рис.2 и называются, соответственно схемами с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК). Название определяется названием электрода транзистора, который является общим для входного и выходного сигналов (см. рис.2).

Рассмотрим принцип работы n – p – n транзистора, включенного по схеме с общей базой (рис.1, б; 2, а). В активном режиме эмиттерный переход смещен в прямом направлении, коллекторный – в обратном. Эмиттер инжектирует электроны в базовую область. Если концентрация носителей в эмиттере много больше, чем концентрация примеси в базе ( ), то ток электронов , инжектируемых в базу, будет практически равен полному току эмиттера . Эффективность эмиттера характеризуют коэффициентом инжекции

,

который должен быть близок к единице.

 

Часть электронов рекомбинирует с дырками базы. Но, если толщина базы - диффузионной длины пробега электронов в базе, то большинство электронов достигнет коллектора. Коллекторный переход смещен в обратном направлении, поэтому открыт для неосновных носителей, каковыми являются электроны в p – базе. Поэтому они захватываются полем коллекторного p – n перехода и попадают в коллектор (экстракция электронов коллектором). Эффективность перемещения электронов через базу определяется коэффициентом переноса χ , где - ток электронов, достигших границы области пространственного заряда (ОПЗ) коллекторного перехода со стороны базы. При малом отношении значение близко к единице. Полный ток коллектора может превышать ток , связанный с инжекцией электронов из эмиттера. Во – первых, электроны при повышенном обратном напряжении на ОПЗ коллектора могут вызвать ударную ионизацию носителей заряда. Лавинное умножение в ОПЗ коллектора увеличивает все токи, пересекающие переход в М раз, где М коэффициент лавинного умножения. Лавинное умножение носителей сопровождается шумами и приводит к нестабильной работе транзистора. Такой режим не используется при усилении сигналов. Для этого задают такое обратное напряжение , при котором M 1, т.е. лавинное умножение носителей в коллекторном p – n переходе практически отсутствует. Во – вторых, даже при токе эмиттера через коллекторный p – n переход протекает обратный ток, обусловленный обратным напряжением на переходе, как в обычном изолированном p – n переходе:

(2.1)

где - обратный ток насыщения коллекторного перехода; знак минус в правой части обусловлен выбором положительного направления тока на рис 1, б. Обозначив управляемую эмиттером составляющую тока коллектора через , для полного тока коллектора получим:

(2.2)

где - коэффициент передачи тока эмиттера.

Индекс N обозначает нормальное включение транзистора (рис.1, б), когда эмиттер инжектирует электроны, а коллектор их собирает. В (2.2) входит величина - падение напряжения на ОПЗ коллектора. Отметим, что под и понимают разность потенциалов на границах ОПЗ коллекторного и эмиттерного переходов. Они отличаются от показанных на рис.1 напряжений и на величину падения напряжения на квазинейтральных областях базы, эмиттера и коллектора. Мы будем считать, что , , полагая, что токи эмиттера, базы и коллектора и создаваемые ими падения напряжения малы.

 



">13
  • 14
  • 15
  • 16
  • 17
  • Далее ⇒