Вопрос 2.Липиды, синтезированные в печени (эндогенные), транспортируются в форме ЛПОНП и ЛПВП

Одновременно в печени интенсивно протекает синтез липидов из изначальных субстратов (уксусной кислоты, глицерола, жирных кислот и т.д.). Транспорт новосинтезированных липидов из печени в кровь, а оттуда - к органам и тканям осуществляют два других типа липопротеиновых частиц, формирующихся в печени - липопротеины очень низкой плотности (ЛПОНП) и липопротеины высокой плотности (ЛПВП). Принципы устройства этих частиц аналогичны таковым у хиломикронов. Разница состоит в том, что размеры ЛПОНП и ещё более - ЛПВП меньше, чем у хиломикронов. Доля белкового компонента в их составе выше (10,4% и 48,8% от массы частицы соответственно), а содержание триацилглицеролов - ниже (31,4% и 1,8% от массы соответственно). Вследствие этого плотность ЛПОНП и ЛПВП выше, чем у хиломикронов.

 

Ферменты обмена липопротеинов Табл.1

Фермент Источник Функция
Липопротеинлипаза (ЛПЛ) адипоциты миоциты Частичное разрушение ХМ и ЛПОНП посредством высвобождения жирных кислот (ЖК) из ТАГ и ФЛ
Печеночная липаза гепатоциты Высвобождение ЖК из ТАГ, ФЛ в составе ЛППП и ЛПВП
Лецитин-холестерол-ацилтрансфераза (ЛХАТ) гепатоциты Необходим для обратного транспорта холестерола; осуществляет эстерификацию холестерола за счет переноса жирной кислоты с лецитина на СХ

 

Липопротеины, содержащие апо В-100. Главным липидным компонентом ЛПОНП являются триацилглицеролы. Однако, в отличие от хиломикронов, эти триацилглицеролы синтезируются в клетках печени. Поэтому они называются эндогенными, в то время как в составе хиломикронов - экзогенными (поступившими с пищей). Основной функцией липопротеинов, содержащих апо В, является транспорт ТАГ из печени к периферическим тканям, особенно в жировую и мышечную. Для синтеза ЛПОНП в гепатоцитах требуется апо В 100, ЭХ, ТАГ и ФЛ.

Апо В-100 - это большой гидрофобный белок (4536 аминокислотных остатков), который синтезируется в печени. На его долю приходится 30-40% от общего количества белка в составе ЛПОНП и >95% белка ЛПНП. Сборка липопротеинов, содержащих апо В-100, идет в эндоплазматическом ретикулуме; каждая частица ЛПОНП содержит один апо В-100.

Триацилглицеролы для ЛПОНП синтезируются путем эстерификации жирных кислот, поступающих в гепатоциты из плазмы крови (источником их является, например, липолиз в жировой ткани) или синтезирующихся de novo в печени. Уровень синтеза ЛПОНП регулируется также наличием холестерола, в особенности, образованием эфиров холестерола под действием ацил~КоА: холестеролацилтрансферазы (АХАТ). Этот фермент локализован в эндоплазматическом ретикулуме близко к месту синтеза ЛПОНП. Его функцией является образование эфиров холестерола.

Сборка ЛПОНП регулируется на уровне посттрансляции за счет контроля наработки апо В-100. Значительное количество этого белка подвергается разрушению; такой контроль на уровне посттрансляции тесно взаимосвязан с обменом липидов в печени. Дело в том, что единственным видом липидов, которые сразу образуют стабильный комплекс с апо В, являются фосфолипиды. Только комплекс апо В с ФХ обладает способностью проходить через мембрану эндоплазматического ретикулума. Ассоциация апо В с ФХ сразу после трансляции обеспечивает возможность образования развернутой структуры белковой молекулы, необходимой для прохождения через мембрану. В случае, если этого комплексирования не происходит, апо В не может пройти через мембрану, и он неизбежно подвергается разрушению в эндоплазматическом ретикулуме.

Другие липиды выступают в качестве регуляторов образования и секреции липопротеинов. Так количество жирных кислот, подвергшихся всасыванию в кишечнике или синтезировавшихся de novo, влияет на уровень образования ТГ, их использования для сборки ЛП. Влияние на секрецию состоит не только в увеличении количества секретируемых липопротеиновых частиц. У вновь образованных ЛПОНП может существенно варьировать размер ядра. Наряду с ядерной частью ЛП нарастает и поверхностный монослой, так как параллельно ТГ увеличивается синтез ФЛ.

В регуляции сборки ЛПОНП чрезвычайно важную роль играют фосфатидилхолины. Об этом свидетельствует тот факт, что у животных с дефицитом холина развивается так называемое жировое перерождение печени. Это такое состояние, когда клетки печеночной ткани переполняются ТГ в результате блокирования секреции ЛП, обогащенных этими липидами. Примечательно, что блокируется секреция только ЛПОНП, в то время как секреция ЛПВП не изменяется. Внесение холина в питательную среду для культивирования гепатоцитов, выделенных у крыс с дефицитом холина, восстанавливала способность к образованию и секреции ЛПОНП. Холин необходим не только для синтеза ФХ, но и для образования апо В.

Апопротеины ЛПОНП. Все белки, которые входят в состав липопротеинов, на пути своего образования проходят схожие этапы. Они сводятся к следующим процессам: 1) трансляция мРНК на рибосомах; 2) перемещение через эндоплазматический ретикулум; 3) посттрансляционная модификация - процессинг (образование дисульфидных мостиков, гликозилирование, фосфорилирование); 4) сборка в транспортные формы; 5) секреция из клетки. Новосинтезированная частица ЛПОНП содержит одну молекулу апо В-100. Апо С-II, апо С-III и апо Е поступают на неё от ЛПВП после того, как ЛПОНП попадают в плазму крови. Они требуются для ускорения метаболизма ЛПОНП. Для лучшего понимания образования ЛПОНП на рис… представлена схема процессов, происходящих в клетках печени.

Обмен ЛПОНП. ЛПОНП секретируются из печени в кровь. На эндотелии сосудистой стенки в периферических тканях ТАГ в составе ЛПОНП, как и в случае ХМ, подвергаются действию фермента ЛПЛ. Необходимым кофактором для проявления активности ЛПЛ является апо С-II. Высвобождающиеся жирные кислоты поступают в клетки органов и тканей.

В дополнению к обмену апопротеинами за счет ЛПОНП формируется поверхностный монослой ЛПВП. У ЛПОНП он становится избыточным вследствие уменьшения ТАГ в составе ядра. С другой стороны, по ходу того, как истощаются ТАГ, ЛПОНП получают ЭХ от ЛПВП. Образование ЭХ на ЛПВП является важнейшим компонентом системы разгрузки клеток от избытка холестерола. Этот процесс происходит с помощью фермента лецитин-холестеролацилтрансферазы (ЛХАТ). Перенос ЭХ осуществляется специальным белком, переносящим липиды (ЛПБ[1]). ЛПБ также известен как белок, переносящий ЭХ (ЭХПБ) или апо D. ЛХАТ и ЛПБ являются основными участниками процесса “обратного транспорта холестерола”. Он получил такое название, поскольку благодаря ему свободный холестерол из тканей переносится в печень и далее экскретируется из организма. ЛПВП участвуют в этом процессе, но не только они. Часть его ( ХС ) ЛПВП передают ЛПОНП по мере того, как в составе последних уменьшается количество ТАГ. Образование ЭХ, гидрофобного соединения, позволяет липопротеинам переносить значительно больше холестерина, чем если бы он оставался в свободной (неэстерифицированной) форме. Сложноэфирная связь в ЭХ образуется за счет присоединения ацильной группы, отщепляемой от b-углеродного атома остатка глицерола в составе лецитина, к гидроксильной группе у 3-го “С” холестерина. Именно этот процесс катализирует ЛХАТ. Перенос образовавшихся ЭХ между частицами липопротеинов осуществляет ЛПБ.

Таким образом, общая динамика катаболизма ЛПОНП заключается в потере ТАГ и приобретении ЭХ. Метаболизм ЛПОНП тесно связан с обменом ЛПВП и липопротеинлипазой.

Липопротеины промежуточной плотности (ЛППП). Из ЛПОНП в ходе описанных выше превращений образуются ЛППП. ЛППП не могут эффективно связываться с ЛПЛ, соответственно обмен ЛППП происходит с помощью другого липолитического фермента, печеночной липазы (ПЛ)[2]. Этот фермент синтезируется в гепатоцитах. В синтезе его также принимает участие синусоидальный эндотелий. ПЛ более эффективно, чем ЛПЛ, катализирует гидролиз ФЛ.

О регуляции печеночной липазы известно немного. Увеличение её активности происходит под влиянием тестостерона, других андрогенов и при беременности. Примечательно, что в обоих случаях для ЛПБ являются основными участниками процесса “обратного транспорта холестерола”. Он получил такое название, поскольку благодаря ему свободный холестерол из тканей переносится в печень и далее экскретируется из организма. ЛПВП участвуют в этом процессе, но не только они. Часть его ЛПВП передают ЛПОНП по мере того, как в составе последних уменьшается количество ТАГ. Образование ЭХ, гидрофобного соединения, позволяет липопротеинам переносить значительно больше холестерина, чем если бы он оставался в свободной (неэстерифицированной) форме. Сложноэфирная связь в ЭХ образуется за счет присоединения ацильной группы, отщепляемой от b-углеродного атома остатка глицерола в составе лецитина, к гидроксильной группе у 3-го “С” холестерина. Именно этот процесс катализирует ЛХАТ. Перенос образовавшихся ЭХ между частицами липопротеинов осуществляет ЛПБ.

Таким образом, общая динамика катаболизма ЛПОНП заключается в потере ТАГ и приобретении ЭХ. Метаболизм ЛПОНП тесно связан с обменом ЛПВП и липопротеинлипазой.

Липопротеины промежуточной плотности (ЛППП). Из ЛПОНП в ходе описанных выше превращений образуются ЛППП. ЛППП не могут эффективно связываться с ЛПЛ, соответственно обмен ЛППП происходит с помощью другого липолитического фермента, печеночной липазы (ПЛ)[3]. Этот фермент синтезируется в гепатоцитах. В синтезе его также принимает участие синусоидальный эндотелий. ПЛ более эффективно, чем ЛПЛ, катализирует гидролиз ФЛ.

Вопрос 3. Связанная с рецептором частица ЛПНП подвергается поглощению клеткой Внутри образовавшихся эндосом липопротеины отщепляются от рецепторов. В дальнейшем ЛПНП поступают в лизосомы, где они разрушаются. В лизосомах происходит гидролиз эфиров холестерола, находившихся в составе ЛПНП. В результате образуется свободный холестерол или окисленные его формы. Свободный холестерол используется для различных целей. Он служит структурным компонентом клеточных мембран, субстратом для синтеза стероидных гормонов и желчных кислот. Продукты же его окислительного превращения оказывают регуляторное воздействие на организм.

Рис.2. . Схема поступления в клетки ЛПНП

Контролирующие механизмы координируют использование внутри- и внеклеточных источников холестерола. При достаточном количестве ЛПНП клетки млекопитающих, с помощью рецепторов, преимущественно используют их в качестве источника холестерола. В это время внутриклеточная система синтеза холестерола находится как бы в резерве, не функционирует в полную силу. Дело в том, что внутриклеточное высвобождение из ЛПНП СХ или окисленных его форм, происходящее таким путем, воздействует на ряд процессов по принципу обратной связи и защищают клетку от чрезмерного накопления ХС. Во-первых, уменьшается активность 3-гидрокси-3-метилглютарил-КоА (ГОМГ-КоА) синтетазы и ГОМГ-КоА редуктазы, двух ключевых ферментов внутриклеточного биосинтеза ХС (см. раздел "Биосинтез ХС"). Во-вторых, стеролы активируют фермент ацил-КоА-холестерол ацил трансферазу, который катализирует этерификацию ХС. Это позволяет клеткам депонировать избыток ХС в форме своеобразных внутриклеточных капель, содержащих гидрофобные ЭХ. В-третьих, уменьшается синтез новых рецепторов к ЛПНП[4], что снижает поступление в клетку этих липопротеиновых частиц.

Обратный транспорт холестерола из периферических тканей к печени осуществляется посредством ЛПВП. Эти липопротеиновые частицы удаляют избыток свободного (неэстерифицированного) холестерола с липопротеиновых частиц, которые существенно отличаются друг от друга по липидному и апопротеиновому составу, размерам и функциям. Образуются ЛПВП в печени. Оттуда они секретируются в кровоток в "незрелом" виде, то есть они имеют дисковидную форму. Такая форма обусловлена отсутствием у них ядра из нейтральных липидов. Основным их липидным компонентом являются фосфолипиды

 

Рис.3. Основные пути транспорта ХС в организме

Переход свободного холестерола из клеток на ЛПВП обусловлен разницей его концентраций на поверхности клеточных мембран и липопротеиновых частиц. Следовательно, он продолжается до тех пор, пока не выровняется концентрация холестерола между донором (поверхность мембран) и акцептором (ЛПВП). Поддержание градиента концентрации обеспечивается постоянным превращением свободного холестерола, поступающего на ЛПВП, в эфиры холестерола. Эта реакция, как уже указывалось, катализируется ферментом лецитин-холестерол-ацилтрансферазой (ЛХАТ[5]).

 

 

Происхождение свободного и эстерифицированного ХС в плазме крови Табл.2.

 

Липопротеин Свободный холестерол Эфиры холестерола  
ХМ Синтез в слизистой кишечника Свободный холестерол
ЛПОНП Гепатоциты АХАТ гепатоцитов  
ЛПНП Гепатоциты АХАТ гепатоцитов - 60% ЛХАТ плазмы - 40%  
ЛПВП Периферические клеточные мембраны - 70% ЛПОНП, ЛПНП - 30% ЛХАТ плазмы - 100%  
           

 

 

гидрофобными соединениями (в отличие от свободного холестерола, у которого имеется гидроксильная группа, сообщающая ему гидрофильность). В силу своей гидрофобности эфиры холестерола теряют способность к диффузии и не могут вернуться обратно в клетку. Они формируют гидрофобное ядро внутри частиц, благодаря которому ЛПВП приобретают сферическую форму. Здесь, в кровотоке из таких ЛПВП осуществляется транспорт вновь образованных неполярных ЭХ из ЛПВП на ХМ, ЛПОНП, ЛППП, который ускоряется за счет белков-переносчиков (см. выше). Затем происходит опосредованное рецепторами поступление ЛПВП, как и других богатых ЭХ липопротеинов, в гепатоциты с последующим их катаболизмом. В частности, высвобождающиеся эфиры холестерола служат исходным субстратом для образования желчных кислот. Аккумуляция холестерола в сосудистой стенке происходит вследствие дисбаланса между поступлением его в интиму сосудов и его выходом. В результате такого дисбаланса холестерол там накапливается. В центрах накопления холестерола формируются структуры - атеромы. Наиболее известны два фактора, которые вызывают дисбаланс в обмене холестерола. Во-первых, это изменения частиц ЛПНП (гликозилирование, перекисное окисление липидов, гидролиз фосфолипидов, окисление апо В). Поэтому они захватываются специальными клетками - "мусорщиками" (главным образом, макрофагами). Захват липопротеиновых частиц с помощью "мусорных" рецепторов протекает бесконтрольно. В отличие от апо В/Е - опосредованного эндоцитоза это не вызывает регуляторных эффектов, направленных на снижение поступления в клетку ХС, описанных выше. В результате макрофаги переполняются липидами, теряют функцию поглощения отходов и превращаются в пенистые клетки. Последние задерживаются в стенке кровеносных сосудов и начинают секретировать факторы роста, ускоряющие клеточное деление. Возникает атеросклеротическая пролиферация клеток.

Заключение.Т.о.нарушенияметаболизма ЛПОНП и ЛПНП являются причиной накопления ХС и его эфиров в клетках.

Организационно- методические указания лаборантскому составу:

Подготовить мультимедийную презентацию лекции в Power Point и flash проекциях

Лекция подготовлена доц. каф. Свергун В.Т.

Дата

 

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

 

№п/п Перечень учебных вопросов Количество выделяемого Времени в минутах
1. Липолиз, механизм мобилизации жира 30 мин
2. Пути метаболизма ацил-SКоА 30 мин
3. Регуляция биосинтеза холестерина 30 мин

Вопрос 1. Механизм мобилизации жира ( роль гормонов , цАМФ и ионов Са+).

Содержащиеся в организме человека массой 70 кг триацилглицеролы (ТАГ) могут дать 100.000 ккал энергии: белки – 60.000 ккал; гликоген – 6.000 ккал; глюкоза - 400 ккал. ТГ составляют 90% среди всех липидов, содержащихся в организме. Наиболее часто встречающимися жирными кислотами в их составе являются олеиновая (18:1), пальмитиновая (16:0) и линолевая (18:2) кислоты. На их долю приходится 75% всех жирных кислот. В норме более 95% ТГ находится в жировой ткани. Оставшиеся 5% локализованы преимущественно в печени и мышцах. При голодании, тяжелом СД, некоторых других состояниях, при которых жир мобилизуется из жировой ткани( ЛИПОЛИЗ) для энергетических целей, количество ТГ в печени увеличивается.

Жировая ткань функционально специализируется на хранении (запасании) и мобилизации ТАГ. При этом за 2-3 недели в адипоците происходит полное их обновление. Схематически процессы синтеза - гидролиза ТАГ изображены ниже.

Предшественниками для синтеза ТАГ являются глицерол-3-фосфат и активированные жирные кислоты. В печени глицерол-3-фосфат может образовываться или в результате фосфорилирования глицерина, или из глюкозы как промежуточный продукт гликолиза. В жировой ткани отсутствует фермент глицеролкиназа; поэтому единственным источником образования глицерол-3-фосфата является гликолиз .Жировая ткань функционально специализируется на хранении (запасании) и мобилизации ТАГ.

Предшественниками для синтеза ТАГ являются глицерол-3-фосфат и активированные жирные кислоты. В печени глицерол-3-фосфат может образовываться или в результате фосфорилирования глицерина, или из глюкозы как промежуточный продукт гликолиза. В жировой ткани отсутствует фермент глицеролкиназа; поэтому единственным источником образования глицерол-3-фосфата является гликолиз.

Жировая ткань функционально специализируется на хранении (запасании) и мобилизации ТАГ. При этом за 2-3 недели в адипоците происходит полное их обновление. Схематически процессы синтеза - гидролиза ТАГ изображены ниже.

Фосфорилирование активирует гормон-чувствительную липазу, тем самым ускоряется гидролиз ТАГ. Адреналин, норадреналин, глюкагон и АКТГ так же активируют этот фермент, в то время как инсулин вызывает его дефосфорилирование, снижая активность

 

Депонирование жира в жировой ткани сопряжено с питанием и гормональным статусом, которые направлены на стимуляцию поглощения глюкозы. Активация жирных кислот происходит путем их превращения в ацил~КоА под влиянием фермента - ацил~КоАсинтетазы.

Гидролиз триацилглицеролов опосредован липазными ферментами. Активность липазы в клетках жировой ткани находится под строгим регуляторным контролем (отсюда название - гормон-чувствительная липаза). Фермент проявляет субстратную специфичность к ТАГ, 1,2-диацилглицеролам, 2-моноацилглицеролам и эфирам холестерола. Активность гормон-чувствительной липазы регулируется путем фосфорилирования-дефосфорилирования, которые опосредует фермент цАМФ-зависимая протеинкиназа. В результате полного гидролиза молекулы ТАГ образуется 3 молекулы жирных кислот и 1 молекула глицерола. Глицерол из жировой ткани попадает в печень и используется там как предшественник в синтезе глюкозы путем глюконеогенеза. Жирные кислоты выходят из адипоцитов в плазму крови. Они используются любыми тканями, клетки которых содержат митохондрии, способные окислять жирные кислоты с выделением энергии. Однако преимущественно эти жирные кислоты утилизируются в клетках сердечной, скелетных мышц и печени. Другим важным источником ТГ являются ЛП плазмы крови.

Метаболизм ТАГ в жировой ткани скоординирован с анаболической и катаболической фазами метаболизма на уровне целого организма. Вслед за перевариванием пищи в плазме крови увеличивается концентрация глюкозы, инсулина, липопротеинов, богатых ТАГ. Наряду с этим стимулируется образование ТАГ в жировой ткани. В развитие этой анаболической фазы вовлечены переносчики глюкозы и гликолиз; стимулируется активность ЛПЛ для гидролиза ТАГ в составе липопротеинов и снижается активность жиромобилизующей липазы в жировой ткани. Натощак или при повышенной потребности в энергии во время физической работы, повышении уровня катехоламинов, гормона роста, АКТГ и глюкагона в плазме крови, снижении секреции инсулина эти процессы меняются на противоположные - увеличивается липолиз, высвобождаются жирные кислоты, используемые в качестве источника энергии, и глицерол - для глюконеогенеза

 

Олеиновая кислота (18:1 w 9) или цис - 9 - октадеценовая кислота.

Линолевая кислота (18:2 w 6) или цис -9-цис-12 -октадекадиеновая кислота.

Линоленовая кислота (18:3 w 3) или цис-9, цис-12, цис-15-октадека-триеновая кислота.

Арахидоновая кислота (20:4 w 6) или (эйкозатетраен-5,8,11,14-овая кислота), цис-5, цис-8, цис-11, цис-14- эйкозатетраеновая кислота.

 

 

 

Характерно, что все двойные связи в составе жирных кислот организма имеют цис-конфигурацию Двумя преобладающими мононенасыщенными жирными кислотами животных липидов являются олеиновая и пальмитолеиновая. Олеиновая кислота наиболее широко распространена в природе и преобладает в количественном отношении. Среди полиненасыщенных жирных кислот в тканях млекопитающих наиболее часто встречается линолевая кислота, содержащая две двойные связи, линоленовая - с тремя двойными связями и арахидоновая - с четырьмя двойными связями. Ненасыщенность жирных кислот существенно влияет на их свойства. С увеличением числа двойных связей снижается температура плавления жирных кислот, возрастает их растворимость в неполярных растворителях. Все ненасыщенные жирные кислоты, встречающиеся в природе, при комнатной температуре являются жидкостями. Олеиновая кислота (18:1 w 9) или цис - 9 - октадеценовая кислота.

Линолевая кислота (18:2 w 6) или цис -9-цис-12 -октадекадиеновая кислота.

Линоленовая кислота (18:3 w 3) или цис-9, цис-12, цис-15-октадека-триеновая кислота.

Арахидоновая кислота (20:4 w 6) или (эйкозатетраен-5,8,11,14-овая кислота), цис-5, цис-8, цис-11, цис-14- эйкозатетраеновая кислота.

 

Транспорт свободных жирных кислот (СЖК) в плазме крови

Как уже упоминалось, основными потребителями СЖК являются клетки сердечной и скелетной мышц, печени. Для этих тканей характерно поглощение 30%-40% СЖК, содержащихся в артериальной крови. Основными СЖК плазмы крови являются пальмитиновая и олеиновая.

Комплекс СЖК - альбумин. Вследствие сильной гидрофобности >99% жирных кислот плазмы циркулируют в нековалетно связанном с альбумином состоянии. Важнейшей функцией альбумина, наиболее распространенного белка во внеклеточной жидкости, является связывание небольших, плохо растворимых в воде молекул. На молекуле альбумина имеется 3 центра связывания, к которым присоединяется 10 и более молекул жирных кислот. В плазме имеется небольшая концентрация жирных кислот, которые не связаны с альбумином, но уравновешены с комплексом альбумин-жирные кислоты. Они могут диффундировать через эндотелий капилляров и поглощаться тканями. Присутствие альбумина обеспечивает существование мощного резервуара жирных кислот в непосредственной близости к тканям всего организма.

Вклад СЖК плазмы крови в энергетический обмен. Период полужизни СЖК плазмы короток (около 1,5 мин), а оборот СЖК плазмы значительный и составляет около 200г/сутки. Если бы все они подверглись окислению, то выделилось бы 1800 ккал энергии. На самом деле, значительная часть этих жирных кислот используется для эстерификации ТАГ.

Оценка вклада СЖК плазмы крови в энергетический обмен

человека

Параметр Значение
Масса 70 кг
Объем плазмы 3 л
СЖК плазмы (средн. концентрация) 0,5 ммоль
Молекулярная масса СЖК (средн.)
Период полужизни СЖК плазмы 1,5 мин
Оборот СЖК плазмы 10 ммоль/л 720 ммоль/сутки 201,6 г/сутки
Калорический коэффициент оборота (9 ккал/г) 1818 ккал/сутки
Калорическая потребность (умеренная активность) 2350 ккал/сут
Максимальный вклад оборота СЖК плазмы в калорическую потребность 77%